中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
节律性生物运动信息的多通道加工及神经编码

文献类型:学位论文

作者申莉
答辩日期2023-06
文献子类博士
授予单位中国科学院大学
授予地点中国科学院心理研究所
其他责任者王莹 ; 蒋毅
关键词生物运动 节律 神经振荡 视知觉 多感觉整合
学位名称理学博士
学位专业基础心理学
其他题名Multisensory Processing and Neural Encoding of Rhythmic Biological Motion
中文摘要Rhythms are central to life and pervasive in human behaviors. The neural oscillations in our brains are rhythmic. Some typical forms of human movements (e.g., walking), termed biological motion (BM), also convey rhythmic signals. Traditionally, rhythm perception has been closely linked with auditory processing, and recent studies show that oscillatory brain activities encode complex rhythmic structures in auditory stimuli like speech and music. However, how neural oscillations encode rhythmic structures of visual BM and whether and to what extent auditory cues and auditory experience influence the visual processing of rhythmic BM signals remain largely unknown. Here we systematically investigated these issues in four studies. In Study 1,we investigated the effect of temporal audiovisual correspondence on the perceptual processing of rhythmic BM. The results from four experiments showed that listening to the frequency-congruent footstep sounds, compared with incongruent or no-sound conditions, speeded up the visual search for point-light walker targets, with this effect driven by distinctive local motion cues (especially the accelerations in foot movement) independent of the global configuration of BM, suggesting a crossmodal integration mechanism triggered by specific kinematic features of BM that facilitate visual attention. An additional experiment revealed that the crossmodal attention facilitation occurred selectively for BM stimuli and increased with stimulus duration, indicating it may depend on the continuous tracking of audiovisual correspondences in BM signals. In Study 2, we conducted five electroencephalogram (EEG) experiments to explore how rhythmic kinematic structures of human BM are dynamically represented in the brain and contribute to visual BM processing. We found that neural oscillations of observers entrained to the hierarchical rhythmic structures of walking and jumping-jack patterns (e.g., basic-level step-cycle and higher-level gait-cycle for walkers). Notably, only the cortical tracking of the higher-level rhythmic structure exhibited a BM processing specificity, when contrasted with the inverted control. This effect could be extended to different motion types and tasks, with its strength positively correlated with the perceptual sensitivity to BM stimuli. Modeling results further suggested that the neural encoding of spatiotemporally integrative cues (generated by the opponent motions of bilateral limbs) drives the selective cortical tracking effect. Moreover, the integrative cues mainly rely on the spatiotemporal summation of local motion cues rather than global configuration cues. Collectively, these findings underscored a cortical encoding mechanism based on periodic kinematic features of body movements, which underlies the dynamic construction of visual BM perception. In Study 3, we further examined whether the cortical encoding of rhythmic signals underpins the audiovisual integration (AVI) of BM information (footstep sounds and walking motion) in two EEG experiments. The strength of cortical entrainment under the audiovisual condition significantly differed from the sum of the cortical tracking effect in the visual and auditory conditions at both step-cycle and gait-cycle frequencies, demonstrating a typical AVI effect. Furthermore, while audiovisual congruency enhanced the cortical tracking of rhythmic structures at both cycle frequencies relative to the incongruent condition, only the cortical tracking of the higher-level rhythmic structure (i.e., the gait-cycle) contributes to the specialized AVI process for BM and correlates with individuals' autistic traits. Together, these results demonstrated a hierarchical cortical entrainment process underlying the AVI of BM and associated with one's autistic traits. Study 4 investigated the role of auditory experience on the visual encoding of the rhythmic structure in BM by comparing the cortical entrainment effect between the control group and the congenital deaf group adopting the same paradigm as in Study 2. Besides, we adopted non-biological visual stimuli with hierarchical rhythmic structures as controls to test the BM一specific effect. For BM stimuli, the cortical entrainment to higher-level rhythmic structures was decreased in the deaf group compared with the control group. For non-BM, the strength of cortical entrainment was not different between the two groups; however, the strongest neural response in the deaf group appeared in the auditory cortex rather than the visual cortex as in the control group. These findings indicate that the ability to encode rhythmic structures in visual BM partially depends on auditory experience, while the visual encoding of non-biological rhythmic stimuli may involve crossmodal compensation. In conclusion, these studies demonstrated a hierarchical cortical entrainment process that underpins the perceptual processing and neural encoding of rhythmic BM. Crucially, the cortical encoding of kinematic cues embedded in higher-level rhythmic structures contributes to the specialized visual processing of BM, which is modulated by auditory BM cues and the observer's auditory experience.
英文摘要节律是生命的核心特征,也普遍存在于人类行为中。大脑中的神经振荡是有节律的,以行走为代表的一些人类运动模式(又称生物运动)也包含了节律信号。节律感知通常被认为与听觉加工密切相关,近期研究发现人脑皮层的神经振荡编码了语言、音乐等听觉刺激中的复杂节律结构。然而,神经振荡如何编码视觉生物运动的节律结构,以及听觉线索和听觉经验是否及如何影响节律性生物运动信息的视觉加工仍有待探索。本文通过四个研究系统探讨了上述问题。 研究一考察了视听时间对应关系对节律性生物运动加工的影响。实验1-4的结果显示,相比于视听节律不一致条件或无声音条件,节律一致的脚步声加快了对目标步行者的视觉搜索。该效应主要由局部运动线索而非全局构型线索驱动,提示存在一种由特定生物运动特征触发的跨通道整合及注意促进机制。实验5利用变化探测范式再次发现了特异于生物运动的跨通道注意促进效应,该效应随刺激呈现时长增加而增强,提示其可能依赖于对生物运动视听对应关系的持续追踪。 研究二通过五个脑电实验探究了人脑如何动态编码视觉生物运动中的节律性运动特征。我们发现大脑皮层中的神经振荡通过“神经同步化”的方式追踪了行走和开合跳刺激中不同层级的节律结构特征,如行走运动中的每一步构成的基础脚步周期和左右脚交替运动行成的高阶步态周期。值得注意的是,对高阶周期结构的追踪在生物运动线索倒置后消失,表现出生物运动加工的特异性。上述结果在不同运动类型和任务要求下稳定出现,且特异于生物运动的皮层追踪效应与生物运动知觉敏感性显著相关。模型分析进一步表明基于双侧肢体对 立运动的时空“整合信号”驱动了生物运动特异性的神经编码。而且,该“整合信号”来自对局部运动线索而非整体构型线索的时空累积。该研究发现了一种基于肢体动作中周期性运动学特征的皮层编码机制,揭示了构建生物运动动态视知觉的基础。 研究三通过两个脑电实验进一步考察了对节律信号的皮层编码机制在生物运动视听整合中的作用。我们给被试呈现脚步声和行走运动,发现视听条件下对步态周期结构和脚步周期结构的神经同步化强度都与视觉和听觉两个单通道条件下的神经同步化强度之和有显著差异,表现出视听整合效应。而且,尽管相比于视听不一致条件,视听同步性同时增强了对两个周期结构的皮层追踪,但只有对高阶周期结构(步态周期)的皮层追踪反映了特异于生物运动的视听整合过程,并与自闭特质显著相关。该研究表明层级式神经同步化参与了生物运动的视听整合,这一过程与自闭特质存在关联。 研究四采用与研究二相同的范式,通过对比听力正常被试和天生聋被试,探讨了生物运动节律结构的视觉编码能力对听觉经验的依赖性,并纳入同样具有层级式节律结构的非生物运动刺激以检验该听觉依赖性是否特异于生物运动。我们发现听障组对生物运动刺激高阶节律结构的神经同步化强度显著弱于正常组。而对于非生物刺激,两组被试的神经同步化强度无显著差异,但正常组的最强响应位于视觉皮层,而耳聋组的最强响应位于听觉皮层。该研究表明生物运动中节律性运动特征的视觉编码能力部分依赖于听觉经验,而非生物信息节律结构的视觉编码可能涉及跨模态代偿。 综上,本研究发现人类大脑通过层级式神经同步化活动提取肢体动作中的节律性运动特征,从而实现对生物运动的动态知觉加工和神经编码。其中,对高阶节律结构包含的运动特征的神经编码反映了特异于生物运动的视觉加工过程,且该过程受到听觉生物运动线索和个体听觉经验的调节。
语种中文
源URL[http://ir.psych.ac.cn/handle/311026/46182]  
专题心理研究所_认知与发展心理学研究室
推荐引用方式
GB/T 7714
申莉. 节律性生物运动信息的多通道加工及神经编码[D]. 中国科学院心理研究所. 中国科学院大学. 2023.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。