中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
海马神经振荡在空间和时序记忆中的作用研究

文献类型:学位论文

作者刘佳丽
答辩日期2023-08
文献子类博士
授予单位中国科学院大学
授予地点中国科学院心理研究所
其他责任者认知神经科学
关键词记忆 认知地图 海马 神经振荡 电刺激
学位名称理学博士
学位专业认知神经科学
其他题名The role of hibbocambal neural oscillations in sbatial and sequential memoy
中文摘要Since the establishment of cognitive neuroscience, many researchers have been fascinated by the neural mechanism of memory. Animal studies and brain injury studies have suggested that the hippocampus is a critical region for memory-guided behaviors, which made the hippocampus become a focus of considerable interest. Researchers have begun to propose memory theory models based on the hippocampus, including "cognitive map", "index theory", "relationship theory" and so on. Integrating previous viewpoints, the current study come up with the idea that the function of the hippocampus is to organize memory index information into a relevant time-space framework, while detailed memory item is represented in the distributed neocortex, and the hippocampus needs to cooperate with the neocortex to complete various memories operate. When thousands to tens of thousands of pyramidal neurons arranged in parallel are active simultaneously, a large number of transmembrane currents form local field potentials. The local field potential in the hippocampus often shows rhythmic neural oscillations in theta (4-12 Hz) and gamma (25-100 Hz) ranges (the frequency range differs slightly in different studies). These neural oscillations have been widely observed in both rodents and human hippocampus during memory and navigation tasks and were strongly correlated with behavioral performance. How the hippocampus uses neural oscillations as a computational component to achieve its memory functions is unclear. The current study investigated how hippocampal neural oscillations support human memory-directed behavior employing epilepsy patients implanted with deep electrodes in the hippocampus as research subjects. Previous studies have shown that the hippocampus represents spatial memory. Therefore, in study 1,we explored how the interaction between hippocampal subregions and entorhinal support spatial memory retrieval. The results showed that the theta-gamma coupling of the hippocampus subregion CA1 and the entorhinal and the theta coherence between the two regions supported the correct memory retrieval; The same spatial memory task was used in Study 2 to explore how the hippocampus represents spatial information to support goal-directed navigation after memory retrieval. The results showed that theta oscillations (6-9 Hz) in the right hippocampus are predictive of goal distance, with theta power decreasing as approaching the goal. Further, this goal distance modulation showed a gradient along the longitude axis of the hippocampus, reflecting spatial hierarchical processing in the hippocampus. Most of the research on the hippocampus is theoretical research, and the application research is lacking. Study 3 intends to improve memory ability by modulating hippocampal neural oscillations through deep electrical stimulation. Previous studies have shown that the hippocampus is also involved in sequential representation, so Study 3 used sequential working memory tasks. The results showed that electrical stimulation of the anterior nucleus of the thalamus can improve working memory precision and increase hippocampal gamma (30-90 Hz) power. Furthermore, the increased in hippocampal gamma power is predictive of the improvement in working memory precision. Various pieces of evidence show that the hippocampus is crucial in memory-guide behavior. However, since the hippocampus is located in a deep brain, it is difficult to study hippocampal signals using non-invasive electrophysiological methods. Some epilepsy patients implanted deep electrodes in the hippocampus-entorhinal cortex. Taking advantage of this valuable clinical opportunity, this study explores how hippocampal neural oscillations support spatial memory and temporal memory. The current study demonstrates the role of communication between hippocampal CA1 and entorhinal cortex in spatial memory retrieval, and first demonstrates hierarchical representation of goal distance along hippocampal long axis. Memory dysfunction caused by neurological diseases, brain injuries, and degenerative diseases has become a major burden on human society. Study 3 explored the possibility of improving memory performance through deep electrical stimulation of anterior nucleus of thalamus, which provided a valuable reference for therapeutic targets and electrical stimulation parameters.
英文摘要自认知神经科学这一学科形成之初,众多研究者前赴后继地着迷于探究记忆的神经机制。动物研究以及脑损伤研究提示海马是负责记忆的关键脑区,这引发了对海马的研究热潮。研究者们纷纷提出基于海马的记忆理论模型,包括“认知地图理论”,“索引理论”,“关系理论”等。整合前人观点,本研究推测海马的功能可能是将记忆的索引信息组织到相关时间一空间框架,而详细的记忆信息分布式地表征于新皮层,海马需要与新皮层共同协作以完成各类记忆操作。 当数千至数万个平行排列的锥体神经元同时活动时,大量的跨膜电流会形成局部场电位。海马局部场电位时常呈现theta (4-12 Hz)和gamma (25-100 Hz)两种节律的神经振荡(不同研究的频率范围取值可能有细微差异),这些神经振荡在以啮齿类动物和人类为被试的记忆导向行为中都被广泛地观察到,并且与研究对象的行为表现非常相关。但海马如何利用神经振荡这一计算组件实现上述记忆功能尚不清楚。 本研究以在海马植入深部电极的癫痈病人为被试,探究海马神经振荡如何支持人类记忆导向行为。前人研究表明海马表征空间框架,因此,研究一以空间记忆任务为范式,探索了海马子区以及内嗅在记忆提取中的作用。研究结果表明海马子区CA1与内嗅的theta-gamma祸合以及二者的theta相干性支持正确记忆提取;研究二依旧以该空间记忆任务为范式,探究海马如何表征空间信息以支持记忆提取后的目的导向导航,研究结果表明右侧海马theta振荡(6-9 Hz)表征目标距离,距离目标越远,海马theta振荡功率越强。目标距离的表征沿海马长轴梯度变化,这反映了海马的空间层级性加工;目前大部分关于海马的研究都是理论研究,应用层面的研究尚且缺乏。研究三拟通过深部电刺激调控海马神经振荡以提高记忆能力。前人研究提示海马也表征时间框架,因此研究三采用了时序工作记忆任务,研究结果表明丘脑前核电刺激可以提高工作记忆精度以及海马gamma(30-90 Hz)振荡,并且海马gamma振荡的升高可预测工作记忆精度的改善。 尽管各种证据表明海马在记忆引导行为中至关重要。然而,由于海马位于大脑深处,很难利用非侵入性电生理方法来研究海马信号。部分癫痫患者在海马-内嗅皮层植入深层电极,利用该宝贵临床机会,本研究探索海马神经振荡如何支持空间记忆和时序记忆。当前研究证明了海马CA1和内嗅皮层之间的信息交互在空间记忆提取中的作用,并首先证明了沿海马长轴的目标距离层级性表征。另外,神经系统疾病、脑损伤、退行性疾病等引起的记忆功能障碍已成为人类社会的一大负担,有许多研究拟利用神经调控改善记忆功能。本研究探索了丘脑前核电刺激改善记忆能力的可能性,为记忆障碍的治疗靶点和电刺激参数提供了有价值的参考。
语种中文
源URL[http://ir.psych.ac.cn/handle/311026/46078]  
专题心理研究所_健康与遗传心理学研究室
推荐引用方式
GB/T 7714
刘佳丽. 海马神经振荡在空间和时序记忆中的作用研究[D]. 中国科学院心理研究所. 中国科学院大学. 2023.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。