中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Machine-learning-based capacity prediction and construction parameter optimization for energy storage salt caverns

文献类型:期刊论文

作者Li, Jinlong; Wang, ZhuoTeng; Zhang, Shuai; Shi, Xilin; Xu, Wenjie; Zhuang, Duanyang; Liu, Jia; Li, Qingdong; Chen, Yunmin
刊名ENERGY
出版日期2022-09-01
卷号254
关键词Energy storage salt cavern Solution mining construction Capacity prediction Artificial neural network Machine learning
ISSN号0360-5442
英文摘要The construction design and control of energy storage salt caverns is the key to ensure their long-term storage capacity and operational safety. Current experimental and numerical design/optimizing methods are time-consuming and rely heavily on engineering experience. This paper proposes a machinelearning-based method for the rapid capacity prediction and construction parameter optimization of energy storage salt caverns. We propose a data generation method that uses 1253 sets of random construction parameters as input. The resulting capacity/efficiency-concerned effective volume (V) and maximum radius (rmax) obtained by our numerical program are the output. A back-propagation artificial neural network model for salt cavern construction prediction (BPANN-SCCP) is trained on the dataset. The cross-validated mean absolute percentage error (MAPE) of the BPANN-SCCP predicted Vis 1.838%, that of the predicted rmax is 3.144%. This accuracy meets the engineering design requirements, and the prediction efficiency is improved by about 6 x 107 times. Using this model, a design parameter optimization method is devised to optimize 3 sets of design parameters from a million random ones. The resulting caverns are regular in shape with larger capacity ratio than 3 field caverns in Jintan Salt Cavern Gas Storage, verifying the reliability of the proposed optimization method. (c) 2022 Elsevier Ltd. All rights reserved.
学科主题Thermodynamics ; Energy & Fuels
语种英语
WOS记录号WOS:000808479000004
出版者PERGAMON-ELSEVIER SCIENCE LTD
源URL[http://119.78.100.198/handle/2S6PX9GI/34825]  
专题中科院武汉岩土力学所
作者单位1.Zhejiang University;
2.Chinese Academy of Sciences; Wuhan Institute of Rock & Soil Mechanics, CAS
推荐引用方式
GB/T 7714
Li, Jinlong,Wang, ZhuoTeng,Zhang, Shuai,et al. Machine-learning-based capacity prediction and construction parameter optimization for energy storage salt caverns[J]. ENERGY,2022,254.
APA Li, Jinlong.,Wang, ZhuoTeng.,Zhang, Shuai.,Shi, Xilin.,Xu, Wenjie.,...&Chen, Yunmin.(2022).Machine-learning-based capacity prediction and construction parameter optimization for energy storage salt caverns.ENERGY,254.
MLA Li, Jinlong,et al."Machine-learning-based capacity prediction and construction parameter optimization for energy storage salt caverns".ENERGY 254(2022).

入库方式: OAI收割

来源:武汉岩土力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。