基于高斯混合模型扣除毛发SERS信号中增强基底的背景峰
文献类型:期刊论文
作者 | 李伟2; 何遥2; 林东岳1![]() ![]() |
刊名 | 光谱学与光谱分析
![]() |
出版日期 | 2023 |
卷号 | 43 |
关键词 | Surface-enhanced Raman spectroscopy Gaussian mixture model Conjugate gradient method Wavelet transform Background peak deduction 表面增强拉曼光谱 高斯混合模型 共轭梯度法 小波变换 背景峰扣除 |
ISSN号 | 1000-0593 |
英文摘要 | 在利用表面增强拉曼光谱(SERS)对毛发中痕量物质进行分析时,该SERS信号中毛发特征峰与增强基底背景峰会相互耦合。在耦合情况下,背景峰会被误识别为毛发特征峰,导致待测物的识别错误,此外具有高峰强特性的背景峰对毛发中微弱特征峰产生掩盖干扰。因此,背景峰的扣除是解决上述问题的重要途径,但常规的扣峰方法会导致周围邻峰的严重失真。针对上述问题提出了高斯混合模型,该模型在表征SERS信号的同时又使得各特征峰相互独立,在扣峰过程中对周围邻峰不产生干扰,既实现干扰峰的扣除又保证了邻峰的微失真。高斯混合模型的核心问题在于模型参数的求解,文中提出了小波变换与共轭梯度法,分别解决模型的初始参数问题及最优解问题。小波变换通过映射放大SERS信号的细节信息,充分提取该信号的细微特征信息,将该特征信息作为模型的初始参数。其中共轭梯度法是迭代优化方法,将模型参数进行循环迭代优化,最终收敛结果即为模型参数的最优解。综上两种方法可准确建立高斯混合模型,模型中单高斯函数为SERS信号的特征峰,且两者的峰形保持一致。在扣除SERS信号的背景峰时应遵循以下过程,包括有效数据的提取、模型建立和峰的扣除。其中有效数据的提取是对空白与滴样的增强基底进行同位置检测,由此得到一组SERS信号。模型建立是通过高斯混合模型对滴样SERS信号进行表征,该信号可由多个高斯函数表现。最后利用空白增强基底的特征峰对滴样的SERS信号进行指认,其中峰形相似且峰位相同的特征峰可扣除。实验结果表明,方差值比最小时,高斯混合模型的峰位、峰宽、峰强等特征与毛发SERS信号基本相同,此时高斯混合模型可准确表征毛发SERS信号的特征信息。在对7组毛发进行扣峰实验时,毛发SERS信号中背景峰扣除率达到50%~100%,同时毛发的特征峰也得到有效提取。在对真实毛发样本进行快速分析时,该模型识别出了毒品曲马多。 |
语种 | 中文 |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/132838] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
作者单位 | 1.中国科学院合肥物质科学研究院 2.安徽大学 |
推荐引用方式 GB/T 7714 | 李伟,何遥,林东岳,等. 基于高斯混合模型扣除毛发SERS信号中增强基底的背景峰[J]. 光谱学与光谱分析,2023,43. |
APA | 李伟,何遥,林东岳,董荣录,&杨良保.(2023).基于高斯混合模型扣除毛发SERS信号中增强基底的背景峰.光谱学与光谱分析,43. |
MLA | 李伟,et al."基于高斯混合模型扣除毛发SERS信号中增强基底的背景峰".光谱学与光谱分析 43(2023). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。