Identification of hadronic tau lepton decays using a deep neural network
文献类型:期刊论文
作者 | The CMS collaboration |
刊名 | Journal of Instrumentation
![]() |
出版日期 | 2022 |
卷号 | 17期号:7页码:7023 |
DOI | 10.1088/1748-0221/17/07/P07023 |
文献子类 | Article |
英文摘要 | A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (τ h) that originate from genuine tau leptons in the CMS detector against τ h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τ h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τ h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τ h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τ h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV. © 2022 CERN. |
电子版国际标准刊号 | 17480221 |
语种 | 英语 |
源URL | [http://ir.ihep.ac.cn/handle/311005/299047] ![]() |
专题 | 高能物理研究所_实验物理中心 |
作者单位 | 中国科学院高能物理研究所 |
推荐引用方式 GB/T 7714 | The CMS collaboration. Identification of hadronic tau lepton decays using a deep neural network[J]. Journal of Instrumentation,2022,17(7):7023. |
APA | The CMS collaboration.(2022).Identification of hadronic tau lepton decays using a deep neural network.Journal of Instrumentation,17(7),7023. |
MLA | The CMS collaboration."Identification of hadronic tau lepton decays using a deep neural network".Journal of Instrumentation 17.7(2022):7023. |
入库方式: OAI收割
来源:高能物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。