中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Identification of hadronic tau lepton decays using a deep neural network

文献类型:期刊论文

作者The CMS collaboration
刊名Journal of Instrumentation
出版日期2022
卷号17期号:7页码:7023
DOI10.1088/1748-0221/17/07/P07023
文献子类Article
英文摘要A new algorithm is presented to discriminate reconstructed hadronic decays of tau leptons (τ h) that originate from genuine tau leptons in the CMS detector against τ h candidates that originate from quark or gluon jets, electrons, or muons. The algorithm inputs information from all reconstructed particles in the vicinity of a τ h candidate and employs a deep neural network with convolutional layers to efficiently process the inputs. This algorithm leads to a significantly improved performance compared with the previously used one. For example, the efficiency for a genuine τ h to pass the discriminator against jets increases by 10-30% for a given efficiency for quark and gluon jets. Furthermore, a more efficient τ h reconstruction is introduced that incorporates additional hadronic decay modes. The superior performance of the new algorithm to discriminate against jets, electrons, and muons and the improved τ h reconstruction method are validated with LHC proton-proton collision data at s = 13 TeV. © 2022 CERN.
电子版国际标准刊号17480221
语种英语
源URL[http://ir.ihep.ac.cn/handle/311005/299047]  
专题高能物理研究所_实验物理中心
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
The CMS collaboration. Identification of hadronic tau lepton decays using a deep neural network[J]. Journal of Instrumentation,2022,17(7):7023.
APA The CMS collaboration.(2022).Identification of hadronic tau lepton decays using a deep neural network.Journal of Instrumentation,17(7),7023.
MLA The CMS collaboration."Identification of hadronic tau lepton decays using a deep neural network".Journal of Instrumentation 17.7(2022):7023.

入库方式: OAI收割

来源:高能物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。