Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data
文献类型:期刊论文
作者 | Long, JY; Zhang, RX; Yang, Z![]() |
刊名 | IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
![]() |
出版日期 | 2022 |
卷号 | 71页码:3515411 |
ISSN号 | 0018-9456 |
DOI | 10.1109/TIM.2022.3181894 |
文献子类 | Article |
电子版国际标准刊号 | 1557-9662 |
语种 | 英语 |
WOS记录号 | WOS:000814675900003 |
源URL | [http://ir.ihep.ac.cn/handle/311005/299529] ![]() |
专题 | 高能物理研究所_东莞分部 |
作者单位 | 中国科学院高能物理研究所 |
推荐引用方式 GB/T 7714 | Long, JY,Zhang, RX,Yang, Z,et al. Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2022,71:3515411. |
APA | Long, JY,Zhang, RX,Yang, Z,Huang, YW,Liu, Y,&Li, C.(2022).Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,71,3515411. |
MLA | Long, JY,et al."Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 71(2022):3515411. |
入库方式: OAI收割
来源:高能物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。