中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data

文献类型:期刊论文

作者Long, JY; Zhang, RX; Yang, Z; Huang, YW; Liu, Y; Li, C
刊名IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
出版日期2022
卷号71页码:3515411
ISSN号0018-9456
DOI10.1109/TIM.2022.3181894
文献子类Article
电子版国际标准刊号1557-9662
语种英语
WOS记录号WOS:000814675900003
源URL[http://ir.ihep.ac.cn/handle/311005/299529]  
专题高能物理研究所_东莞分部
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
Long, JY,Zhang, RX,Yang, Z,et al. Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2022,71:3515411.
APA Long, JY,Zhang, RX,Yang, Z,Huang, YW,Liu, Y,&Li, C.(2022).Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data.IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,71,3515411.
MLA Long, JY,et al."Self-Adaptation Graph Attention Network via Meta-Learning for Machinery Fault Diagnosis With Few Labeled Data".IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 71(2022):3515411.

入库方式: OAI收割

来源:高能物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。