中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
基于差分和神经网络的同步辐射光源图像压缩方法

文献类型:期刊论文

作者符世园; 汪璐; 程耀东; 陈刚
刊名国防科技大学学报
出版日期2022
卷号44期号:5页码:53-62
ISSN号10012486
DOI10.11887/j.cn.202205006
文献子类Article
英文摘要For the common image lossless compression methods cannot work well. Thus, a lossless compression method for synchrotron radiation source images based on image difference and neural network was proposed. The image difference method was used to reduce the linear correlations among images. The neural network was trained to learn the nonlinear correlations in the images sequence, and the pixel value was compressed with arithmetic coding using the predicted distribution. To reduce the predicting time and coding timethe pixel value was splitted into two parts for parallel compression. The tests based on the images of Shanghai Synchrotron Radiation Facility show that the proposed method can improve more than 20% in compression ratio compared to PNG (portable network graphics)JPEG2000, FLIF (free lossless image format)and the pixel value split can reduce 30% of the time in predicting and coding. © 2022 National University of Defense Technology. All rights reserved.
语种中文
源URL[http://ir.ihep.ac.cn/handle/311005/300444]  
专题高能物理研究所_计算中心
高能物理研究所_管理与技术支持
作者单位中国科学院高能物理研究所
推荐引用方式
GB/T 7714
符世园,汪璐,程耀东,等. 基于差分和神经网络的同步辐射光源图像压缩方法[J]. 国防科技大学学报,2022,44(5):53-62.
APA 符世园,汪璐,程耀东,&陈刚.(2022).基于差分和神经网络的同步辐射光源图像压缩方法.国防科技大学学报,44(5),53-62.
MLA 符世园,et al."基于差分和神经网络的同步辐射光源图像压缩方法".国防科技大学学报 44.5(2022):53-62.

入库方式: OAI收割

来源:高能物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。