中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Physics-Guided Deep Learning Method for Tool Condition Monitoring in Smart Machining System

文献类型:期刊论文

作者Li, Shenshen2,3; Lin, Xin3; Shi, Hu1; Shi, Yungao2; Zhu, Kunpeng2,3
刊名IEEE-ASME TRANSACTIONS ON MECHATRONICS
出版日期2023-09-20
关键词Deep learning physics-guided data model tool condition monitoring
ISSN号1083-4435
DOI10.1109/TMECH.2023.3311435
通讯作者Zhu, Kunpeng(zhukp@wust.edu.cn)
英文摘要Accurate and fast prediction of tool conditions is fundamental to improve the machining accuracy and consistency in smart machining systems. The current tool condition monitoring methods, i.e., physics-based and data-driven approaches, have either low prediction accuracy or model generalization. To solve the shortcomings and utilize the benefits of both sides, a novel physics-guided deep learning model is developed in this study. The physics of cutting mechanics and tool wear model is applied to guide the model construction and regulate the network learning process. The model first generates large labeled simulation dataset for the pretraining of the deep network, and solves the problem of labeled-data insufficiency for network training in practice. It then fine-tunes the model through the monitored signal to optimize the network weight and alleviate the deviation between the physical model and the actual machining process, which improves the physical consistency and generalization of the model. Additionally, with the introduction of attention mechanism to the deep residual network, discriminant features can be extracted to distinguish wear values and working conditions. The experimental results show that by learning the physics, the physics-guided deep network can accurately predict the tool wear even under limited training sets and varied working conditions, and it outperforms the original data-driven models and the physical models.
WOS关键词GAUSSIAN PROCESS REGRESSION ; MODEL ; PROGNOSIS ; DIAGNOSIS ; CONTACT ; NETWORK
资助项目Natural Science Foundation of China[52175528] ; Natural Science Foundation of China[52175481]
WOS研究方向Automation & Control Systems ; Engineering
语种英语
WOS记录号WOS:001078218600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构Natural Science Foundation of China
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/133441]  
专题中国科学院合肥物质科学研究院
通讯作者Zhu, Kunpeng
作者单位1.Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
2.Chinese Acad Sci, Inst Intelligent Machines, Hefei Inst Phys Sci, Changzhou 213164, Peoples R China
3.Wuhan Univ Sci & Technol, Sch Machinery & Automat, Wuhan 430081, Peoples R China
推荐引用方式
GB/T 7714
Li, Shenshen,Lin, Xin,Shi, Hu,et al. Physics-Guided Deep Learning Method for Tool Condition Monitoring in Smart Machining System[J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS,2023.
APA Li, Shenshen,Lin, Xin,Shi, Hu,Shi, Yungao,&Zhu, Kunpeng.(2023).Physics-Guided Deep Learning Method for Tool Condition Monitoring in Smart Machining System.IEEE-ASME TRANSACTIONS ON MECHATRONICS.
MLA Li, Shenshen,et al."Physics-Guided Deep Learning Method for Tool Condition Monitoring in Smart Machining System".IEEE-ASME TRANSACTIONS ON MECHATRONICS (2023).

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。