中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Molecular Dynamics Study on the Spontaneous Adsorption of Aromatic Carboxylic Acids to Methane Hydrate Surfaces: Implications for Hydrate Antiagglomeration

文献类型:期刊论文

作者He, Zhongjin1,2; Ning, Fulong1; Mi, Fengyi1; Fang, Bin1; Jiang, Guosheng1
刊名ENERGY & FUELS
出版日期2022-04-07
卷号36期号:7页码:3628-3639
ISSN号0887-0624
DOI10.1021/acs.energyfuels.2c00347
通讯作者Ning, Fulong(nflzx@cug.edu.cn)
英文摘要Spontaneous adsorption of aromatic carboxylic acids (phenylacetic acid, 2-napthylacetic acid, and 1-pyreneacetic acid) to the CH4 hydrate surface in both liquid hydrocarbon and aqueous phases has been investigated using molecular dynamics simulations, aiming to provide implications for hydrate antiagglomeration. Simulation results indicate that the liquid-phase environment, that is, the liquid hydrocarbon phase or aqueous phase, especially its hydrophilic/hydrophobic property, could profoundly affect the interfacial structures of CH4 hydrate and the adsorption behavior of aromatic carboxylic acids. In the hydrophobic hydrocarbon phase, with many CH4 molecules dissolved, more interfacial hydrate structures decompose and form a thin quasiliquid water film on the hydrate surface; aromatic carboxylic acids act as surfactants, that is, strongly adsorb to the hydrate/hydrocarbon interface and significantly lower the interfacial tension. Moreover, they adsorb to the interfacial water film on the hydrate surface with their carboxylic groups, which may destabilize the capillary liquid bridges formed among hydrate particles and then prevent hydrate coalescence. By contrast, fewer interfacial hydrate structures decompose in the aqueous phase, as CH4 molecules rarely dissolve in water but stay at the hydrate/water interface and stabilize the hydrate solid; only a few aromatic carboxylic acids adsorb to the hydrate/water interface by inserting their aromatic rings into the semicages on the hydrate surface, which may kinetically disturb the hydrate growth. Such adsorption is not very strong and mainly depends on the size matching between aromatic rings and semicages. Consequently, many more aromatic carboxylic acid molecules strongly adsorb to the hydrate surface in the hydrocarbon phase than in the aqueous phase, which can explain why antiagglomerants generally show a higher performance in the hydrocarbon phase and easily lose efficacy at high watercuts. Additionally, the molecular structures could also affect the adsorption behavior of aromatic carboxylic acids: with more aromatic rings, acid molecules can form stable aggregates via the pi-pi stacking interactions of the aromatic rings, adversely affecting the adsorption in the aqueous phase.
WOS关键词CYCLOPENTANE HYDRATE ; GAS ; SURFACTANTS ; INHIBITORS ; POLYVINYLPYRROLIDONE ; AGGLOMERATION ; PERFORMANCE ; POTENTIALS ; MECHANISM ; EFFICIENT
资助项目National Natural Science Foundation of China[41976203] ; National Natural Science Foundation of China[21506178] ; National Key Research and Development Program of China[2018YFE0126400] ; Department of Natural Resources of Guangdong Province Project[GDNRC[2020]-047] ; Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)[CUGGC09] ; Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences[Y907kg1001]
WOS研究方向Energy & Fuels ; Engineering
语种英语
WOS记录号WOS:000797939400019
出版者AMER CHEMICAL SOC
资助机构National Natural Science Foundation of China ; National Key Research and Development Program of China ; Department of Natural Resources of Guangdong Province Project ; Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) ; Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
源URL[http://ir.giec.ac.cn/handle/344007/36626]  
专题中国科学院广州能源研究所
通讯作者Ning, Fulong
作者单位1.China Univ Geosci, Fac Engn, Natl Ctr Int Res Deep Earth Drilling & Resource D, Wuhan 430074, Hubei, Peoples R China
2.Chinese Acad Sci, Key Lab Gas Hydrate, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
He, Zhongjin,Ning, Fulong,Mi, Fengyi,et al. Molecular Dynamics Study on the Spontaneous Adsorption of Aromatic Carboxylic Acids to Methane Hydrate Surfaces: Implications for Hydrate Antiagglomeration[J]. ENERGY & FUELS,2022,36(7):3628-3639.
APA He, Zhongjin,Ning, Fulong,Mi, Fengyi,Fang, Bin,&Jiang, Guosheng.(2022).Molecular Dynamics Study on the Spontaneous Adsorption of Aromatic Carboxylic Acids to Methane Hydrate Surfaces: Implications for Hydrate Antiagglomeration.ENERGY & FUELS,36(7),3628-3639.
MLA He, Zhongjin,et al."Molecular Dynamics Study on the Spontaneous Adsorption of Aromatic Carboxylic Acids to Methane Hydrate Surfaces: Implications for Hydrate Antiagglomeration".ENERGY & FUELS 36.7(2022):3628-3639.

入库方式: OAI收割

来源:广州能源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。