中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dependency-Aware Vehicular Task Scheduling Policy for Tracking Service VEC Networks

文献类型:期刊论文

作者Li, Chao3; Liu, Fagui2,3; Wang, Bin2; Chen, C. L. Philip1,3; Tang, Xuhao3; Jiang, Jun3; Liu, Jie3
刊名IEEE TRANSACTIONS ON INTELLIGENT VEHICLES
出版日期2023-03-01
卷号8期号:3页码:2400-2414
关键词Task analysis Intelligent vehicles Optimization Processor scheduling Vehicle dynamics Heuristic algorithms Costs Deep reinforcement learning (DRL) scheduling policy tracking service vehicular edge computing (VEC)
ISSN号2379-8858
DOI10.1109/TIV.2022.3224057
通讯作者Liu, Fagui(fgliu@scut.edu.cn) ; Wang, Bin(wangb02@pcl.ac.cn)
英文摘要In this paper, we study a tracking service vehicular edge computing (VEC) network that provides computation offloading service for Intelligent vehicles, where computational tasks with different urgency and dependency are required to be completed efficiently within strict time constraints. We consider the actual scenario where the environmental parameters fluctuate randomly and their distributions are unknown, thus, a long-term scheduling policy optimization problem needs to be solved. For this motivation, we first define a queueing criterion to sort the subtasks into a scheduling queue, and then model a specific Markov decision process (MDP) according to the scheduling queue. Furthermore, we propose our vehicular task scheduling policy optimizing (VTSPO) algorithm based on the most advanced policy-based deep reinforcement learning (DRL). The experimental results compared with known value-based DRL algorithms verify the advantages of the proposed VTSPO algorithm.
WOS关键词EDGE ; VEHICLES
资助项目Guangdong Major Project of Basic and Applied Basic Research[2019B030302002] ; Science and Technology Major Project of Guangzhou[202007030006] ; Major Key Project of PCL[PCL2021A09] ; Science and Technology Project of Guangdong Province[2021B1111600001] ; Engineering and Technology Research Center of Guangdong Province for Logistics Supply Chain and Internet of Things[GDDST[2016]176]
WOS研究方向Computer Science ; Engineering ; Transportation
语种英语
WOS记录号WOS:000981348100034
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构Guangdong Major Project of Basic and Applied Basic Research ; Science and Technology Major Project of Guangzhou ; Major Key Project of PCL ; Science and Technology Project of Guangdong Province ; Engineering and Technology Research Center of Guangdong Province for Logistics Supply Chain and Internet of Things
源URL[http://ir.ia.ac.cn/handle/173211/53335]  
专题离退休人员
通讯作者Liu, Fagui; Wang, Bin
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100080, Peoples R China
2.Peng Cheng Lab, Cyberspace Secur Res Ctr, Shenzhen 518066, Peoples R China
3.South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
推荐引用方式
GB/T 7714
Li, Chao,Liu, Fagui,Wang, Bin,et al. Dependency-Aware Vehicular Task Scheduling Policy for Tracking Service VEC Networks[J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES,2023,8(3):2400-2414.
APA Li, Chao.,Liu, Fagui.,Wang, Bin.,Chen, C. L. Philip.,Tang, Xuhao.,...&Liu, Jie.(2023).Dependency-Aware Vehicular Task Scheduling Policy for Tracking Service VEC Networks.IEEE TRANSACTIONS ON INTELLIGENT VEHICLES,8(3),2400-2414.
MLA Li, Chao,et al."Dependency-Aware Vehicular Task Scheduling Policy for Tracking Service VEC Networks".IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 8.3(2023):2400-2414.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。