ProxyMix: Proxy-based Mixup training with label refinery for source-free domain adaptation
文献类型:期刊论文
作者 | Ding, Yuhe5; Sheng, Lijun1,3,4; Liang, Jian2,3,4![]() ![]() |
刊名 | NEURAL NETWORKS
![]() |
出版日期 | 2023-10-01 |
卷号 | 167页码:92-103 |
关键词 | Source-free unsupervised domain adaptation Pseudo labeling |
ISSN号 | 0893-6080 |
DOI | 10.1016/j.neunet.2023.08.005 |
通讯作者 | Liang, Jian(liangjian92@gmail.com) |
英文摘要 | Due to privacy concerns and data transmission issues, Source-free Unsupervised Domain Adaptation (SFDA) has gained popularity. It exploits pre-trained source models, rather than raw source data for target learning, to transfer knowledge from a labeled source domain to an unlabeled target domain. Existing methods solve this problem typically with additional parameters or noisy pseudo labels, and we propose an effective method named Proxy-based Mixup training with label refinery (ProxyMix) to avoid these drawbacks. To avoid additional parameters and leverages information in the source model, ProxyMix defines classifier weights as class prototypes and creates a class-balanced proxy source domain using nearest neighbors of the prototypes. To improve the reliability of pseudo labels, we further propose the frequency-weighted aggregation strategy to generate soft pseudo labels for unlabeled target data. Our strategy utilizes target features' internal structure, increases weights of low frequency class samples, and aligns the proxy and target domains using inter-and intra-domain mixup regularization. This mitigates the negative impact of noisy labels. Experiments on three 2D image and 3D point cloud object recognition benchmarks demonstrate that ProxyMix yields state-of-the-art performance for source-free UDA tasks. (c) 2023 Elsevier Ltd. All rights reserved. |
资助项目 | National Natural Science Foundation of China[62276256] ; Beijing Nova Program, China[Z211100002121108] ; University Synergy Innovation Program of Anhui Province[GXXT-2022-036] |
WOS研究方向 | Computer Science ; Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:001068310300001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
资助机构 | National Natural Science Foundation of China ; Beijing Nova Program, China ; University Synergy Innovation Program of Anhui Province |
源URL | [http://ir.ia.ac.cn/handle/173211/53089] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
通讯作者 | Liang, Jian |
作者单位 | 1.Univ Sci & Technol China, Hefei, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China 3.Chinese Acad Sci CASIA, Inst Automat, Ctr Res Intelligent Percept & Comp, Beijing, Peoples R China 4.Chinese Acad Sci CASIA, State Key Lab Multimodal Artificial Intelligence S, Beijing, Peoples R China 5.Anhui Univ, Sch Comp Sci & Technol, Hefei, Peoples R China 6.Anhui Univ, Sch Artificial Intelligence, Hefei, Peoples R China |
推荐引用方式 GB/T 7714 | Ding, Yuhe,Sheng, Lijun,Liang, Jian,et al. ProxyMix: Proxy-based Mixup training with label refinery for source-free domain adaptation[J]. NEURAL NETWORKS,2023,167:92-103. |
APA | Ding, Yuhe,Sheng, Lijun,Liang, Jian,Zheng, Aihua,&He, Ran.(2023).ProxyMix: Proxy-based Mixup training with label refinery for source-free domain adaptation.NEURAL NETWORKS,167,92-103. |
MLA | Ding, Yuhe,et al."ProxyMix: Proxy-based Mixup training with label refinery for source-free domain adaptation".NEURAL NETWORKS 167(2023):92-103. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。