MAF-Net: A multi-scale attention fusion network for automatic surgical instrument segmentation?
文献类型:期刊论文
作者 | Yang, Lei2,3![]() ![]() ![]() |
刊名 | BIOMEDICAL SIGNAL PROCESSING AND CONTROL
![]() |
出版日期 | 2023-08-01 |
卷号 | 85页码:10 |
关键词 | Semantic segmentation Deep learning Surgical instrument Multi-scale feature fusion Residual dense network |
ISSN号 | 1746-8094 |
DOI | 10.1016/j.bspc.2023.104912 |
通讯作者 | Bian, Guibin(guibin.bian@ia.ac.cn) ; Liu, Yanhong(liuyh@zzu.edu.cn) |
英文摘要 | Accurate localization of surgical instruments is of utmost importance for precise robot-assisted surgeries. With the development of artificial intelligence, deep convolutional neural networks (DCNNs) have been widely employed for automatic image segmentation, owing to their strong ability to generate contextual features, especially in the encoder-decoder framework. However, existing segmentation networks lack the feature capturing capability on micro objects and have shortcomings in processing local semantic features. These limitations can affect the precise segmentation of surgical instruments. In response to these issues, this paper proposes a multi-scale attention fusion network called MAF-Net, which comprises residual dense module, a multi-scale atrous convolution (MSAC) module, and an attention fusion module (AFM). To improve the processing ability of local contextual features, we propose replacing skip connections with residual dense module to acquire stronger contexts. Furthermore, a MSAC module is proposed for local feature enhancement, thereby enhancing attention on multi-scale features. In addition, an AFM module is introduced to integrate multi-scale information by cross-scale feature fusion. Experimental results, using two public datasets, Endovis2017 and kvasir-instrument, demonstrate that the proposed network has the ability to achieve precise surgical instrument segmentation and outperforms related advanced methods. |
WOS关键词 | IMAGE SEGMENTATION ; NEURAL-NETWORKS ; ROBOT |
资助项目 | National Key Research & Development Project of China[2020YFB1313701] ; National Natural Science Foundation of China[62003309] |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000982779200001 |
出版者 | ELSEVIER SCI LTD |
资助机构 | National Key Research & Development Project of China ; National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/53251] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
通讯作者 | Bian, Guibin; Liu, Yanhong |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 2.Zhengzhou Univ, Sch Elect & Informat Engn, Zhengzhou 450001, Henan, Peoples R China 3.Robot Percept & Control Engn Lab Henan Prov, Zhengzhou 450001, Henan, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Lei,Gu, Yuge,Bian, Guibin,et al. MAF-Net: A multi-scale attention fusion network for automatic surgical instrument segmentation?[J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL,2023,85:10. |
APA | Yang, Lei,Gu, Yuge,Bian, Guibin,&Liu, Yanhong.(2023).MAF-Net: A multi-scale attention fusion network for automatic surgical instrument segmentation?.BIOMEDICAL SIGNAL PROCESSING AND CONTROL,85,10. |
MLA | Yang, Lei,et al."MAF-Net: A multi-scale attention fusion network for automatic surgical instrument segmentation?".BIOMEDICAL SIGNAL PROCESSING AND CONTROL 85(2023):10. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。