sEMG-Based Gesture Recognition Method for Coal Mine Inspection Manipulator Using Multistream CNN
文献类型:期刊论文
作者 | Tong, Lina2; Zhang, Mingjia2; Ma, Hanghang2; Wang, Chen1![]() ![]() |
刊名 | IEEE SENSORS JOURNAL
![]() |
出版日期 | 2023-05-15 |
卷号 | 23期号:10页码:11082-11090 |
关键词 | Sensors Muscles Inspection Coal mining Robots Feature extraction Gesture recognition Coal mine inspection manipulator gestures recognition multistream convolutional neural network (CNN) surface electromyography (sEMG) time--frequency graph feature |
ISSN号 | 1530-437X |
DOI | 10.1109/JSEN.2023.3264646 |
通讯作者 | Wang, Chen(wangchen2016@ia.ac.cn) |
英文摘要 | With the rapid development of intelligent mining technology, remote-operated underground inspection and rescue robot have been widely used. This article recognized the operator's emergency gestures based on forearm surface electromyography (sEMG). First, a wireless six-channel sEMG acquisition device is built and a dataset named coal mine inspection manipulator gestures (CMMG) is acquired; then, the features of each channel signal are extracted to a 2-D graph by a continue wavelet transform (CWT) method. The multistream convolutional neural network (CNN) model is built to analyze the feature graphs so as to detect action segments. The comparative experiments showed that the method improved the accuracy and showed better performance on both the CMMG dataset and the public Ninapro DB1 dataset. |
WOS关键词 | NETWORK ; ERROR |
资助项目 | National Key Research and Development Program of China[2022YFC3601200] ; National Natural Science Foundation of China[62203441] ; National Natural Science Foundation of China[U21A20479] ; Beijing Natural Science Foundation[4232053] |
WOS研究方向 | Engineering ; Instruments & Instrumentation ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000991857800081 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key Research and Development Program of China ; National Natural Science Foundation of China ; Beijing Natural Science Foundation |
源URL | [http://ir.ia.ac.cn/handle/173211/53480] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
通讯作者 | Wang, Chen |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China 2.China Univ Min & Technol Beijing, Dept Elect Engn & Automat, Beijing 100083, Peoples R China |
推荐引用方式 GB/T 7714 | Tong, Lina,Zhang, Mingjia,Ma, Hanghang,et al. sEMG-Based Gesture Recognition Method for Coal Mine Inspection Manipulator Using Multistream CNN[J]. IEEE SENSORS JOURNAL,2023,23(10):11082-11090. |
APA | Tong, Lina,Zhang, Mingjia,Ma, Hanghang,Wang, Chen,&Peng, Liang.(2023).sEMG-Based Gesture Recognition Method for Coal Mine Inspection Manipulator Using Multistream CNN.IEEE SENSORS JOURNAL,23(10),11082-11090. |
MLA | Tong, Lina,et al."sEMG-Based Gesture Recognition Method for Coal Mine Inspection Manipulator Using Multistream CNN".IEEE SENSORS JOURNAL 23.10(2023):11082-11090. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。