中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
sEMG-Based Gesture Recognition Method for Coal Mine Inspection Manipulator Using Multistream CNN

文献类型:期刊论文

作者Tong, Lina2; Zhang, Mingjia2; Ma, Hanghang2; Wang, Chen1; Peng, Liang1
刊名IEEE SENSORS JOURNAL
出版日期2023-05-15
卷号23期号:10页码:11082-11090
关键词Sensors Muscles Inspection Coal mining Robots Feature extraction Gesture recognition Coal mine inspection manipulator gestures recognition multistream convolutional neural network (CNN) surface electromyography (sEMG) time--frequency graph feature
ISSN号1530-437X
DOI10.1109/JSEN.2023.3264646
通讯作者Wang, Chen(wangchen2016@ia.ac.cn)
英文摘要With the rapid development of intelligent mining technology, remote-operated underground inspection and rescue robot have been widely used. This article recognized the operator's emergency gestures based on forearm surface electromyography (sEMG). First, a wireless six-channel sEMG acquisition device is built and a dataset named coal mine inspection manipulator gestures (CMMG) is acquired; then, the features of each channel signal are extracted to a 2-D graph by a continue wavelet transform (CWT) method. The multistream convolutional neural network (CNN) model is built to analyze the feature graphs so as to detect action segments. The comparative experiments showed that the method improved the accuracy and showed better performance on both the CMMG dataset and the public Ninapro DB1 dataset.
WOS关键词NETWORK ; ERROR
资助项目National Key Research and Development Program of China[2022YFC3601200] ; National Natural Science Foundation of China[62203441] ; National Natural Science Foundation of China[U21A20479] ; Beijing Natural Science Foundation[4232053]
WOS研究方向Engineering ; Instruments & Instrumentation ; Physics
语种英语
WOS记录号WOS:000991857800081
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Key Research and Development Program of China ; National Natural Science Foundation of China ; Beijing Natural Science Foundation
源URL[http://ir.ia.ac.cn/handle/173211/53480]  
专题多模态人工智能系统全国重点实验室
通讯作者Wang, Chen
作者单位1.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
2.China Univ Min & Technol Beijing, Dept Elect Engn & Automat, Beijing 100083, Peoples R China
推荐引用方式
GB/T 7714
Tong, Lina,Zhang, Mingjia,Ma, Hanghang,et al. sEMG-Based Gesture Recognition Method for Coal Mine Inspection Manipulator Using Multistream CNN[J]. IEEE SENSORS JOURNAL,2023,23(10):11082-11090.
APA Tong, Lina,Zhang, Mingjia,Ma, Hanghang,Wang, Chen,&Peng, Liang.(2023).sEMG-Based Gesture Recognition Method for Coal Mine Inspection Manipulator Using Multistream CNN.IEEE SENSORS JOURNAL,23(10),11082-11090.
MLA Tong, Lina,et al."sEMG-Based Gesture Recognition Method for Coal Mine Inspection Manipulator Using Multistream CNN".IEEE SENSORS JOURNAL 23.10(2023):11082-11090.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。