中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ScoreMix: A Scalable Augmentation Strategy for Training GANs With Limited Data

文献类型:期刊论文

作者Cao, Jie1,3,4; Luo, Mandi1,3,4; Yu, Junchi1,3,4; Yang, Ming-Hsuan2; He, Ran1,3,4
刊名IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
出版日期2023-07-01
卷号45期号:7页码:8920-8935
关键词Generative adversarial networks image synthesis data augmentation few-shot image-to-image translation
ISSN号0162-8828
DOI10.1109/TPAMI.2022.3231649
通讯作者He, Ran(ran.he@ia.ac.cn)
英文摘要Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available. To facilitate GAN training, current methods propose to use data-specific augmentation techniques. Despite the effectiveness, it is difficult for these methods to scale to practical applications. In this article, we present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks. We first produce augmented samples using the convex combinations of the real samples. Then, we optimize the augmented samples by minimizing the norms of the data scores, i.e., the gradients of the log-density functions. This procedure enforces the augmented samples close to the data manifold. To estimate the scores, we train a deep estimation network with multi-scale score matching. For different image synthesis tasks, we train the score estimation network using different data. We do not require the tuning of the hyperparameters or modifications to the network architecture. The ScoreMix method effectively increases the diversity of data and reduces the overfitting problem. Moreover, it can be easily incorporated into existing GAN models with minor modifications. Experimental results on numerous tasks demonstrate that GAN models equipped with the ScoreMix method achieve significant improvements.
资助项目National Natural Science Foundation of China[6220073425] ; National Natural Science Foundation of China[U21B2045] ; National Natural Science Foundation of China[U20A20223] ; NSF CAREER[1149783]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:001004665900065
出版者IEEE COMPUTER SOC
资助机构National Natural Science Foundation of China ; NSF CAREER
源URL[http://ir.ia.ac.cn/handle/173211/53630]  
专题多模态人工智能系统全国重点实验室
通讯作者He, Ran
作者单位1.Chinese Acad Sci, Inst Automat, NLPR, Beijing 100045, Peoples R China
2.Univ Calif Merced, Merced, CA 95343 USA
3.Univ Chinese Acad Sci, Beijing 101408, Peoples R China
4.Chinese Acad Sci, Inst Automat, CRIPAC, Beijing 100045, Peoples R China
推荐引用方式
GB/T 7714
Cao, Jie,Luo, Mandi,Yu, Junchi,et al. ScoreMix: A Scalable Augmentation Strategy for Training GANs With Limited Data[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2023,45(7):8920-8935.
APA Cao, Jie,Luo, Mandi,Yu, Junchi,Yang, Ming-Hsuan,&He, Ran.(2023).ScoreMix: A Scalable Augmentation Strategy for Training GANs With Limited Data.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,45(7),8920-8935.
MLA Cao, Jie,et al."ScoreMix: A Scalable Augmentation Strategy for Training GANs With Limited Data".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 45.7(2023):8920-8935.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。