HTCViT: an effective network for image classification and segmentation based on natural disaster datasets
文献类型:期刊论文
作者 | Ma, Zhihao2,4; Li, Wei2,4![]() ![]() ![]() ![]() |
刊名 | VISUAL COMPUTER
![]() |
出版日期 | 2023-07-04 |
页码 | 13 |
关键词 | Natural disaster image analysis Vision transformer Convolution Hierarchical |
ISSN号 | 0178-2789 |
DOI | 10.1007/s00371-023-02954-3 |
通讯作者 | Meng, Weiliang(weiliang.meng@ia.ac.cn) ; Xu, Shibiao(shibiaoxu@bupt.edu.cn) |
英文摘要 | Classifying and segmenting natural disaster images are crucial for predicting and responding to disasters. However, current convolutional networks perform poorly in processing natural disaster images, and there are few proprietary networks for this task. To address the varying scales of the region of interest (ROI) in these images, we propose the Hierarchical TSAM-CB-ViT (HTCViT) network, which builds on the ViT network's attention mechanism to better process natural disaster images. Considering that ViT excels at extracting global context but struggles with local features, our method combines the strengths of ViT and convolution, and can capture overall contextual information within each patch using the Triple-Strip Attention Mechanism (TSAM) structure. Experiments validate that our HTCViT can improve the classification task with 3 - 4% and the segmentation task with 1 - 2% on natural disaster datasets compared to the vanilla ViT network. |
资助项目 | National Natural Science Foundation of China[U21A20515] ; National Natural Science Foundation of China[61972459] ; National Natural Science Foundation of China[62172416] ; National Natural Science Foundation of China[62102414] ; National Natural Science Foundation of China[U2003109] ; National Natural Science Foundation of China[62071157] ; National Natural Science Foundation of China[62171321] ; National Natural Science Foundation of China[62162044] ; Open Research Projects of ZhejiangLab[2021KE0AB07] ; [TC210H00L/42] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001025049000002 |
出版者 | SPRINGER |
资助机构 | National Natural Science Foundation of China ; Open Research Projects of ZhejiangLab |
源URL | [http://ir.ia.ac.cn/handle/173211/53648] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
通讯作者 | Meng, Weiliang; Xu, Shibiao |
作者单位 | 1.Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing, Peoples R China 2.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China 3.Zhejiang Lab, Hangzhou, Peoples R China 4.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Ma, Zhihao,Li, Wei,Zhang, Muyang,et al. HTCViT: an effective network for image classification and segmentation based on natural disaster datasets[J]. VISUAL COMPUTER,2023:13. |
APA | Ma, Zhihao,Li, Wei,Zhang, Muyang,Meng, Weiliang,Xu, Shibiao,&Zhang, Xiaopeng.(2023).HTCViT: an effective network for image classification and segmentation based on natural disaster datasets.VISUAL COMPUTER,13. |
MLA | Ma, Zhihao,et al."HTCViT: an effective network for image classification and segmentation based on natural disaster datasets".VISUAL COMPUTER (2023):13. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。