A Novel Biologically Inspired Structural Model for Feature Correspondence
文献类型:期刊论文
作者 | Lu, Yan-Feng1,2![]() ![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS
![]() |
出版日期 | 2023-06-01 |
卷号 | 15期号:2页码:844-854 |
关键词 | Visualization Biological system modeling Biology Brain modeling Biological information theory Task analysis Strain Appearance feature descriptor biologically inspired model feature correspondence feature representation graph matching (GM) graph structure |
ISSN号 | 2379-8920 |
DOI | 10.1109/TCDS.2022.3188333 |
通讯作者 | Yang, Xu(xu.yang@ia.ac.cn) |
英文摘要 | Feature correspondence is an essential issue in computer science, which could be well formulated by graph matching (GM). However, traditional GM is susceptible to outliers, thus limiting the applications. To address the issue, we present a biologically inspired feature descriptor (BIFD) corresponding to the simple and complex cell layers in primary visual cortex, which shows robust performance against deformations. Furthermore, we propose a novel biologically inspired structural model (BISM) for feature correspondence by fusing the graph structural information and appearance information described by BIFD in the images. The proposed BIFD imitates the cortical pooling operation across multiscale and multiangle cell layers, which makes BISM robust to outliers and distortions. To demonstrate the validity of the proposed method, we evaluate it in feature correspondence tasks on the public databases. The experimental results on synthetic data prove the validity of the proposed method. |
WOS关键词 | OBJECT RECOGNITION |
资助项目 | National Key Research and Development Plan of China[2020AAA0105900] ; Beijing Natural Science Foundation[L211023] ; National Natural Science Foundation of China[91948303] ; National Natural Science Foundation of China[61973301] ; Youth Innovation Promotion Association CAS |
WOS研究方向 | Computer Science ; Robotics ; Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:001005746000046 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Key Research and Development Plan of China ; Beijing Natural Science Foundation ; National Natural Science Foundation of China ; Youth Innovation Promotion Association CAS |
源URL | [http://ir.ia.ac.cn/handle/173211/53651] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
通讯作者 | Yang, Xu |
作者单位 | 1.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Automat, Natl Key Lab Multimodal Artificial Intelligence Sy, Beijing 100190, Peoples R China 3.Nanchang Univ, Sch Informat Engn, Nanchang 330031, Peoples R China |
推荐引用方式 GB/T 7714 | Lu, Yan-Feng,Yang, Xu,Li, Yi,et al. A Novel Biologically Inspired Structural Model for Feature Correspondence[J]. IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS,2023,15(2):844-854. |
APA | Lu, Yan-Feng,Yang, Xu,Li, Yi,Yu, Qian,Liu, Zhi-Yong,&Qiao, Hong.(2023).A Novel Biologically Inspired Structural Model for Feature Correspondence.IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS,15(2),844-854. |
MLA | Lu, Yan-Feng,et al."A Novel Biologically Inspired Structural Model for Feature Correspondence".IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 15.2(2023):844-854. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。