Optimal Spin Polarization Control for the Spin-Exchange Relaxation-Free System Using Adaptive Dynamic Programming
文献类型:期刊论文
作者 | Wang, Ruigang2,3; Wang, Zhuo2,3![]() ![]() ![]() ![]() |
刊名 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
出版日期 | 2022-12-26 |
页码 | 13 |
关键词 | 3-D spin polarization control (3DSPC) adaptive dynamic programming (ADP) asymmetric input constraint multicritic multiaction neural networks (MCMANNs) multiphysics multiplayer nonzero-sum game (MP-NZSG) spin-exchange relaxation-free (SERF). |
ISSN号 | 2162-237X |
DOI | 10.1109/TNNLS.2022.3230200 |
通讯作者 | Wang, Zhuo(zhuowang@buaa.edu.cn) |
英文摘要 | This work is the first to solve the 3-D spin polarization control (3DSPC) problem of atomic ensembles, which controls the spin polarization to achieve arbitrary states with the cooperation of multiphysics fields. First, a novel adaptive dynamic programming (ADP) structure is proposed based on the developed multicritic multiaction neural network (MCMANN) structure with nonquadratic performance functions, as a way to solve the multiplayer nonzero-sum game (MP-NZSG) problem in 3DSPC under the constraints of asymmetric saturation inputs. Then, we utilize the MCMANNs to implement the multicritic multiaction ADP (MCMA-ADP) algorithm, whose convergence is proven by the compression mapping principle. Finally, the MCMA-ADP is deployed in the spin-exchange relaxation-free (SERF) system to provide a set of control laws in 3DSPC that fully exploits the multiphysics fields to achieve arbitrary spin polarization states. Numerical simulations support the theoretical results. |
WOS关键词 | ONLINE LEARNING CONTROL |
资助项目 | Key Area Research and Development Program of Guangdong Province[2021B0101410005] ; National Natural Science Foundation of China[61673041] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:001046423800005 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Key Area Research and Development Program of Guangdong Province ; National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/53888] ![]() |
专题 | 多模态人工智能系统全国重点实验室 |
通讯作者 | Wang, Zhuo |
作者单位 | 1.Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China 2.Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing 100191, Peoples R China 3.Beihang Univ, Hangzhou Innovat Inst, Zhejiang Prov Key Lab Ultra Weak Magnet Field Spa, Hangzhou 310051, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Ruigang,Wang, Zhuo,Liu, Sixun,et al. Optimal Spin Polarization Control for the Spin-Exchange Relaxation-Free System Using Adaptive Dynamic Programming[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2022:13. |
APA | Wang, Ruigang.,Wang, Zhuo.,Liu, Sixun.,Li, Tao.,Li, Feng.,...&Wei, Qinglai.(2022).Optimal Spin Polarization Control for the Spin-Exchange Relaxation-Free System Using Adaptive Dynamic Programming.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,13. |
MLA | Wang, Ruigang,et al."Optimal Spin Polarization Control for the Spin-Exchange Relaxation-Free System Using Adaptive Dynamic Programming".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2022):13. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。