中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multiple Knowledge-Enhanced Meteorological Social Briefing Generation

文献类型:期刊论文

作者Shi, Kaize1,6; Peng, Xueping; Lu, Hao4,5; Zhu, Yifan3; Niu, Zhendong1,2
刊名IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS
出版日期2023-08-03
页码12
关键词Controllable text generation decision support service emergency management meteorological social briefing natural disaster social weather
ISSN号2329-924X
DOI10.1109/TCSS.2023.3298252
通讯作者Niu, Zhendong(zniu@bit.edu.cn)
英文摘要Frequent meteorological disasters present new challenges for decision-making in disaster response. As a timely and effective source of intelligent information, social media plays a vital role in detecting and monitoring these situations. Meteorological social briefings summarize valuable information from numerous social media posts, providing essential decision-support services. This article proposes a multi-knowledge-enhanced summarization (MKES) model for automatically generating meteorological social briefing content from multiple Sina Weibo posts. The MKES model consists of a summary generation module and a knowledge enhancement module. The knowledge enhancement module guides and constrains the summary generation process using meteorological events and geographical location knowledge, resulting in summaries that focus on describing specific knowledge from the source text. The MKES model outperforms baseline models in content evaluation, as measured by ROUGE-1, ROUGE-2, and ROUGE-L scores, and in sentiment evaluation, as measured by F1 scores. Based on the MKES model, a framework for generating meteorological social briefings is developed, providing decision support services for the China Meteorological Administration (CMA).
资助项目National Natural Science Foundation of China[62272048] ; National Key Research and Development Program of China[2019YFB1406302]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:001043270800001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; National Key Research and Development Program of China
源URL[http://ir.ia.ac.cn/handle/173211/54005]  
专题多模态人工智能系统全国重点实验室
通讯作者Niu, Zhendong
作者单位1.Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
2.Univ Pittsburgh, Sch Comp & Informat, Pittsburgh, PA 15260 USA
3.Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
4.Chinese Acad Sci, State Key Lab Management & Controlof Complex Syst, Inst Automat, Beijing 100190, Peoples R China
5.Chinese Acad Sci, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
6.Univ Technol Sydney, Australian Artificial Intelligence Inst, Sydney, NSW 2007, Australia
推荐引用方式
GB/T 7714
Shi, Kaize,Peng, Xueping,Lu, Hao,et al. Multiple Knowledge-Enhanced Meteorological Social Briefing Generation[J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,2023:12.
APA Shi, Kaize,Peng, Xueping,Lu, Hao,Zhu, Yifan,&Niu, Zhendong.(2023).Multiple Knowledge-Enhanced Meteorological Social Briefing Generation.IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS,12.
MLA Shi, Kaize,et al."Multiple Knowledge-Enhanced Meteorological Social Briefing Generation".IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS (2023):12.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。