Adding attention to the neural ordinary differential equation for spatio-temporal prediction
文献类型:期刊论文
作者 | Wang, Peixiao3,4; Zhang, Tong4; Zhang, Hengcai3; Cheng, Shifen; Wang, Wangshu2 |
刊名 | INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
![]() |
出版日期 | 2023-11-07 |
关键词 | Geospatial artificial intelligence spatio-temporal prediction spatio-temporal attention neural ordinary differential equation |
DOI | 10.1080/13658816.2023.2275160 |
产权排序 | 1 |
文献子类 | Article ; Early Access |
英文摘要 | Explainable spatio-temporal prediction gains attraction in the development of geospatial artificial intelligence. The neural ordinal differential equation (NODE) emerges as a new solution for explainable spatio-temporal prediction. However, challenges still need to be solved in most existing NODE-based prediction models, such as difficulty modeling spatial data and mining long-term temporal dependencies in data. In this study, we propose a spatio-temporal attentional NODE (STA-ODE) to address the two challenges above. First, we define a spatio-temporal ordinary differential equation to predict a value at each time iteratively by a novel spatio-temporal derivative network. Second, we develop an attention mechanism to fuse multiple prediction values for capturing long-term temporal dependencies in data. To train the STA-ODE model, we design a loss function that aligns the prediction results in spatial dimension with prediction results in temporal dimension to calibrate the parameters of the model. The proposed model was validated with three real-world spatio-temporal datasets (traffic flow dataset, PM2.5 monitoring dataset, and temperature monitoring dataset). Experimental results showed that STA-ODE outperformed seven existing baselines regarding prediction accuracy. In addition, we used visualization to demonstrate the sound interpretability and prediction accuracy of the STA-ODE model. |
WOS关键词 | URBAN FLOW PREDICTION ; NETWORKS ; INTERPOLATION ; MULTITASK |
WOS研究方向 | Computer Science ; Geography ; Physical Geography ; Information Science & Library Science |
WOS记录号 | WOS:001096818500001 |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/199449] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
作者单位 | 1.Vienna Univ Technol, Dept Geodesy & Geoinformat, Res Unit Cartog, Vienna, Austria 2.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing, Peoples R China 3.Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan, Peoples R China 4.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Peixiao,Zhang, Tong,Zhang, Hengcai,et al. Adding attention to the neural ordinary differential equation for spatio-temporal prediction[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2023. |
APA | Wang, Peixiao,Zhang, Tong,Zhang, Hengcai,Cheng, Shifen,&Wang, Wangshu.(2023).Adding attention to the neural ordinary differential equation for spatio-temporal prediction.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE. |
MLA | Wang, Peixiao,et al."Adding attention to the neural ordinary differential equation for spatio-temporal prediction".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE (2023). |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。