PNET:像素级台标识别网络
文献类型:期刊论文
作者 | 徐佳宇2; 张冬明3; 靳国庆1; 包秀国3; 袁庆升3; 张勇东4 |
刊名 | 计算机辅助设计与图形学学报
![]() |
出版日期 | 2018 |
卷号 | 30.0期号:010页码:1878 |
关键词 | 视频分类 台标识别 全卷积网络 像素级半自动标注 跨层架构 |
ISSN号 | 1003-9775 |
英文摘要 | 台标识别是典型的细微目标识别问题,针对台标区域小、信息量低,且镂空、半透明台标极易受到画面背景影响的难题,提出一个基于端到端全卷积网络的像素级台标识别网络——PNET.首先构建一个像素级标注的台标数据集,通过视频抽帧和图像预处理获得台标图像集,并提出一种逐图像的像素级半自动标注方法获得二值标签图像集;然后提出一个像素级台标识别网络,在典型分类网络AlexNet,VGG的基础上,通过微调,将分类网络在分类任务中学习到的网络参数转换为像素级台标识别网络在台标分割任务中的所需的网络参数;最后引入跨层架构,融合来自网络深层的全局信息和浅层的局部信息.实验结果表明PNET实现了准确的像素级分割,准确率高达98.3%,在NVIDIA Tesla K80上单幅图像识别时间不超过1.5 s. |
语种 | 英语 |
源URL | [http://119.78.100.204/handle/2XEOYT63/32380] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_中文 |
作者单位 | 1.中国科学院计算技术研究所 2.天津大学电气自动化与信息工程学院 3.国家计算机网络应急处理协调中心 4.中国科学技术大学信息科学技术学院 |
推荐引用方式 GB/T 7714 | 徐佳宇,张冬明,靳国庆,等. PNET:像素级台标识别网络[J]. 计算机辅助设计与图形学学报,2018,30.0(010):1878. |
APA | 徐佳宇,张冬明,靳国庆,包秀国,袁庆升,&张勇东.(2018).PNET:像素级台标识别网络.计算机辅助设计与图形学学报,30.0(010),1878. |
MLA | 徐佳宇,et al."PNET:像素级台标识别网络".计算机辅助设计与图形学学报 30.0.010(2018):1878. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。