中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
EAT-2 attenuates C. elegans development via metabolic remodeling in a chemically defined food environment

文献类型:期刊论文

作者Cao, Xuwen1,2,3,5,6; Xie, Yusu1,5,6; Yang, Hanwen1,5,6; Sun, Peiqi1,3,5,6; Xue, Beining1,3,5,6; Garcia, L. Rene4; Zhang, Liusuo1,5,6
刊名CELLULAR AND MOLECULAR LIFE SCIENCES
出版日期2023-08-01
卷号80期号:8页码:18
ISSN号1420-682X
关键词C. elegans maintenance medium CeMM Development Acetylcholine receptor Fatty acid C17ISO S-adenosylmethionine SAM
DOI10.1007/s00018-023-04849-x
通讯作者Zhang, Liusuo(lzhang@qdio.ac.cn)
英文摘要Dietary intake and nutrient composition regulate animal growth and development; however, the underlying mechanisms remain elusive. Our previous study has shown that either the mammalian deafness homolog gene tmc-1 or its downstream acetylcholine receptor gene eat-2 attenuates Caenorhabditis elegans development in a chemically defined food CeMM (C. elegans maintenance medium) environment, but the underpinning mechanisms are not well-understood. Here, we found that, in CeMM food environment, for both eat-2 and tmc-1 fast-growing mutants, several fatty acid synthesis and elongation genes were highly expressed, while many fatty acid beta-oxidation genes were repressed. Accordingly, dietary supplementation of individual fatty acids, such as monomethyl branch chain fatty acid C17ISO, palmitic acid and stearic acid significantly promoted wild-type animal development on CeMM, and mutations in either C17ISO synthesis gene elo-5 or elo-6 slowed the rapid growth of eat-2 mutant. Tissue-specific rescue experiments showed that elo-6 promoted animal development mainly in the intestine. Furthermore, transcriptome and metabolome analyses revealed that elo-6/C17ISO regulation of C. elegans development may be correlated with up-regulating expression of cuticle synthetic and hedgehog signaling genes, as well as promoting biosynthesis of amino acids, amino acid derivatives and vitamins. Correspondingly, we found that amino acid derivative S-adenosylmethionine and its upstream metabolite methionine sulfoxide significantly promoted C. elegans development on CeMM. This study demonstrated that C17ISO, palmitic acid, stearic acid, S-adenosylmethionine and methionine sulfoxide inhibited or bypassed the TMC-1 and EAT-2-mediated attenuation of development via metabolic remodeling, and allowed the animals to adapt to the new nutritional niche.
WOS关键词CHAIN FATTY-ACID ; CAENORHABDITIS-ELEGANS ; DIET ; INSULIN ; IDENTIFICATION ; BIOSYNTHESIS ; LONGEVITY ; EXTENSION ; PATHWAYS ; CIRCUIT
WOS研究方向Biochemistry & Molecular Biology ; Cell Biology
语种英语
出版者SPRINGER BASEL AG
WOS记录号WOS:001030563000003
源URL[http://ir.qdio.ac.cn/handle/337002/182634]  
专题海洋研究所_实验海洋生物学重点实验室
通讯作者Zhang, Liusuo
作者单位1.Chinese Acad Sci, Inst Oceanol, CAS & Shandong Prov Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China
2.Shandong Univ, Inst Marine Sci & Technol, 72 Binhai Rd, Qingdao 266237, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
5.Chinese Acad Sci, Ctr Ocean Mega Sci, 7 Nanhai Rd, Qingdao 266071, Peoples R China
6.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao 266237, Peoples R China
推荐引用方式
GB/T 7714
Cao, Xuwen,Xie, Yusu,Yang, Hanwen,et al. EAT-2 attenuates C. elegans development via metabolic remodeling in a chemically defined food environment[J]. CELLULAR AND MOLECULAR LIFE SCIENCES,2023,80(8):18.
APA Cao, Xuwen.,Xie, Yusu.,Yang, Hanwen.,Sun, Peiqi.,Xue, Beining.,...&Zhang, Liusuo.(2023).EAT-2 attenuates C. elegans development via metabolic remodeling in a chemically defined food environment.CELLULAR AND MOLECULAR LIFE SCIENCES,80(8),18.
MLA Cao, Xuwen,et al."EAT-2 attenuates C. elegans development via metabolic remodeling in a chemically defined food environment".CELLULAR AND MOLECULAR LIFE SCIENCES 80.8(2023):18.

入库方式: OAI收割

来源:海洋研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。