中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
BiMNet: A Multimodal Data Fusion Network for continuous circular capsulorhexis Action Segmentation

文献类型:期刊论文

作者Bian, Gui-Bin4,5; Zheng, Jia-Ying4,5; Li, Zhen4; Wang, Jie4,5; Fu, Pan4,5; Xin, Chen3; da Silva, Daniel Santos2; Wu, Wan-Qing1; De Albuquerque, Victor Hugo C.2
刊名EXPERT SYSTEMS WITH APPLICATIONS
出版日期2024-03-15
卷号238页码:10
关键词Cataract surgery Continuous circumferential capsulotomy Continuous action segmentation Multimodal data fusion Imbalanced data
ISSN号0957-4174
DOI10.1016/j.eswa.2023.121885
通讯作者Bian, Gui-Bin(guibin.bian@ia.ac.cn)
英文摘要Completing continuous circular capsulorhexis (CCC) requires the operator to perform fine operations, which is difficult to do accurately when continuous fine actions are out of balance in the classification of CCC procedures. Multimodal deep learning can improve the classifier's performance, but the recognition accuracy of inferior classes is difficult to improve. To solve these problems, a bidirect-gate recurrent unit (Bi-GRU)-attention-based multimodal, multi-timescale data fusion network (BiMNet) is proposed, which contains a data extraction module called a skip-concatenate gate recurrent unit (SC-GRU), a bimodal data fusion attention computation, and a decoder module. The combination of these modules can fully extract the features of different temporal scales in multimodal action data and fuse them effectively. The model is validated using the ophthalmologist CCC multimodal maneuver dataset, which was collected by the data collection platform constructed in this research, achieving an accuracy of 0.9124 +/- 0.0125 in continuous action sequence segmentation and improving the F1-score of minority class recognition to over 80%, making it more effective than baseline algorithms.
资助项目National Natural Science Foun-dation of China[62027813] ; National Natural Science Foun-dation of China[U20A20196] ; National Key Re-search and Development Program of China[2022YFB4702900] ; Beijing Science Fund for Distinguished Young Scholars, China[JQ21016] ; Excellent member of CAS Youth Innovation Promotion Association, China[Y2022054]
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
语种英语
WOS记录号WOS:001088900900001
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构National Natural Science Foun-dation of China ; National Key Re-search and Development Program of China ; Beijing Science Fund for Distinguished Young Scholars, China ; Excellent member of CAS Youth Innovation Promotion Association, China
源URL[http://ir.ia.ac.cn/handle/173211/54292]  
专题多模态人工智能系统全国重点实验室
智能机器人系统研究
通讯作者Bian, Gui-Bin
作者单位1.Sun Yat Sen Univ, Sch Biomed Engn, Guangzhou 510275, Peoples R China
2.Univ Fed Ceara, Dept Teleinformat Engn, BR-60811905 Fortaleza, CE, Brazil
3.Capital Med Univ, Beijing Tongren Hosp, Ophthalmol Dept, Beijing 100005, Peoples R China
4.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
5.Beijing Informat Sci & Technol Univ, Sch Automat, Beijing 100096, Peoples R China
推荐引用方式
GB/T 7714
Bian, Gui-Bin,Zheng, Jia-Ying,Li, Zhen,et al. BiMNet: A Multimodal Data Fusion Network for continuous circular capsulorhexis Action Segmentation[J]. EXPERT SYSTEMS WITH APPLICATIONS,2024,238:10.
APA Bian, Gui-Bin.,Zheng, Jia-Ying.,Li, Zhen.,Wang, Jie.,Fu, Pan.,...&De Albuquerque, Victor Hugo C..(2024).BiMNet: A Multimodal Data Fusion Network for continuous circular capsulorhexis Action Segmentation.EXPERT SYSTEMS WITH APPLICATIONS,238,10.
MLA Bian, Gui-Bin,et al."BiMNet: A Multimodal Data Fusion Network for continuous circular capsulorhexis Action Segmentation".EXPERT SYSTEMS WITH APPLICATIONS 238(2024):10.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。