中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
1G and microgravity tank self-pressurization: Research on cryogenic fluid thermal stratification

文献类型:期刊论文

作者Zhang, M.; Liu QS(刘秋生)
刊名INTERNATIONAL JOURNAL OF THERMAL SCIENCES
出版日期2024-02-01
卷号196页码:21
ISSN号1290-0729
关键词Self-pressurization Cryogenic fluid Thermal stratification Two-phase flow Microgravity
DOI10.1016/j.ijthermalsci.2023.108722
通讯作者Zhang, M.(zhangmin@imech.ac.cn)
英文摘要A correlation numerical model was constructed, and relevant experiments were simulated to investigate the influence of gravity level on the self-pressurization process of the cryogenic fluid of liquid nitrogen. The calculated results agreed well with the experimental data. On this basis, the influences of a normal gravity environment and a microgravity environment on the self-pressurization process of liquid nitrogen in the normaltemperature fluid Perfluoro-n-Pentane (PnP, or C5F12) tank of National Aeronautics and Space Administration (NASA) were analyzed. According to the calculation results, an explicit horizontal interface is formed between the gas and liquid phases in the tank during the 1G (G = 9.81 m/s2) self-pressurization process. The ullage pressure increases as time progresses, and obvious thermal stratification phenomena are observed in the ullage along the axial and radial directions. However, the thermal stratification of the liquid zone is not obvious. The ullage near the gas-liquid interface shifts from counterclockwise movement to clockwise movement, while the liquid changes from clockwise movement to counterclockwise movement. In the process of microgravity selfpressurization, the gas-liquid interface in the tank presents an irregular shape, and the ullage pressure increases continuously before 400 s and then tends to be stable. The axial thermal stratification of fluid in the tank tends to disappear as time progresses, but obvious radial thermal stratification is observed. The ullage in the tank moves up and down as a response to the Marangoni migration effect. The temperature of the liquid zone in the tank during 1G self-pressurization tends to be consistent more quickly than that during microgravity selfpressurization, and the average temperature is higher. However, the temperature reduction rate of the ullage in the tank during microgravity self-pressurization is higher than that during 1G self-pressurization. Numerical simulation results can provide references to further study the on-orbit pressure control technique of cryogenic liquid tanks.
分类号二类/Q1
WOS关键词TURBULENCE
资助项目National Natural Science Foundation of China[11532015] ; National Natural Science Foundation of China[U1738119]
WOS研究方向Thermodynamics ; Engineering
语种英语
WOS记录号WOS:001097653900001
资助机构National Natural Science Foundation of China
其他责任者Zhang, M.
源URL[http://dspace.imech.ac.cn/handle/311007/93499]  
专题力学研究所_国家微重力实验室
推荐引用方式
GB/T 7714
Zhang, M.,Liu QS. 1G and microgravity tank self-pressurization: Research on cryogenic fluid thermal stratification[J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES,2024,196:21.
APA Zhang, M.,&刘秋生.(2024).1G and microgravity tank self-pressurization: Research on cryogenic fluid thermal stratification.INTERNATIONAL JOURNAL OF THERMAL SCIENCES,196,21.
MLA Zhang, M.,et al."1G and microgravity tank self-pressurization: Research on cryogenic fluid thermal stratification".INTERNATIONAL JOURNAL OF THERMAL SCIENCES 196(2024):21.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。