中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
大数据挖掘和机器学习在毒理学中的应用

文献类型:期刊论文

作者滕跃发1,3; 王晓晴1,3; 李斐2,3; 吴惠丰2,3; 吉成龙2,3; 于进福4
刊名生态毒理学报
出版日期2022
卷号17期号:1页码:93-101
关键词数据挖掘 机器学习 结构-活性关系 AOP 计算毒理学
ISSN号1673-5897
其他题名Application of Data Mining and Machine Learning in Toxicology
文献子类期刊论文
英文摘要With the rapid development of high-throughput screening technologies, information on the toxicity of chemicals is growing day by day. The rapid development of computerized methods, such as data mining and machine learning, has provided a new approach to the toxicity prediction and risk control of chemicals. It is very important to establish the framework of ecological risk assessment by integrating a series of effective tools. Among these tools, adverse outcome pathway (AOP) can connect the structure of compounds, molecular initiation events, and adverse effects of organisms, thus can be used for risk assessment and management decisions. Quantitative structure-activity relationship (QSAR) modeling, molecular simulation and multi-omics techniques play important roles in the function of AOP. This review mainly introduces the application methods of data mining and machine learning in toxicology, including QSAR modeling, molecular simulation and omics. The current research focus and direction of computational toxicology were also reviewed with the aim of the better understanding of the big data era.
语种中文
CSCD记录号CSCD:7221479
源URL[http://ir.yic.ac.cn/handle/133337/34198]  
专题烟台海岸带研究所_中科院海岸带环境过程与生态修复重点实验室
烟台海岸带研究所_近岸生态与环境实验室
作者单位1.中国科学院大学,北京100049;
2.中国科学院海洋大科学研究中心,青岛266071
3.中国科学院海岸带环境过程与生态修复重点实验室(烟台海岸带研究所),山东省海岸带环境过程重点实验室,中国科学院烟台海岸带研究所,烟台264003;
4.烟台职业学院网络中心,烟台264670;
推荐引用方式
GB/T 7714
滕跃发,王晓晴,李斐,等. 大数据挖掘和机器学习在毒理学中的应用[J]. 生态毒理学报,2022,17(1):93-101.
APA 滕跃发,王晓晴,李斐,吴惠丰,吉成龙,&于进福.(2022).大数据挖掘和机器学习在毒理学中的应用.生态毒理学报,17(1),93-101.
MLA 滕跃发,et al."大数据挖掘和机器学习在毒理学中的应用".生态毒理学报 17.1(2022):93-101.

入库方式: OAI收割

来源:烟台海岸带研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。