中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Landslide hazard spatiotemporal prediction based on data-driven models: Estimating where, when and how large landslide may be

文献类型:期刊论文

作者Fang, Zhice1,2; Wang, Yi1,3; van Westen, Cees2; Lombardo, Luigi2
刊名INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION
出版日期2024-02-01
卷号126页码:13
关键词Spatiotemporal landslide hazard prediction Exceedance probability Slope unit Spatiotemporal cross-validation
ISSN号1569-8432
DOI10.1016/j.jag.2023.103631
通讯作者Wang, Yi(cug.yi.wang@gmail.com)
英文摘要The geoscientific community primarily focuses on predicting where landslides are likely to occur through datadriven susceptibility models. Recently, few researchers have turned to statistical estimation of landslide planimetric area within a given terrain unit and exploration of the spatiotemporal distribution of landslide occurrence. However, these data-driven approaches cannot fulfill the commonly accepted definition of landslide hazard and cannot predict the location, time/frequency, and magnitude of landslide occurrence simultaneously. This study proposes a unified and data-driven framework for landslide hazard spatiotemporal modeling, enabling dynamic and probabilistic estimation of landslide occurrence within a given slope unit at a specific time period and for a specific landslide magnitude. This framework not only involves static and dynamic factors in modelling, but also considers spatial and temporal interactions to explore the spatiotemporal variation effects of landslide hazard. We test this framework on the main island of Taiwan with a multi-temporal landslide inventory from 2004 to 2018. Specifically, this framework assumes that the occurrence and size of landslides spatiotemporally follows a binomial and a Log-Gaussian distribution, respectively, and then uses generalized additive models to achieve the estimation of landslide hazard probability. Finally, the performance is validated by a spatiotemporal leave-oneout cross-validation scheme. We believe that this framework will lay the foundation for the community to estimate landslide hazard in a unified and probabilistic data-driven prototype. We envision it could lead to studies of dynamic hazard responses to climate change.
WOS关键词SUSCEPTIBILITY ; INVENTORIES ; MACHINE ; TAIWAN ; AREAS ; SCALE ; BASIN
资助项目Joint Fund of the National Natural Science Foundation of China[U21A2013] ; State Key Laboratory of Resources and Environmental Information System ; China Scholarship Council[202106410043] ; Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan) ; King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia[URF/1/4338-01-01]
WOS研究方向Remote Sensing
语种英语
WOS记录号WOS:001149732200001
出版者ELSEVIER
资助机构Joint Fund of the National Natural Science Foundation of China ; State Key Laboratory of Resources and Environmental Information System ; China Scholarship Council ; Fundamental Research Funds for National Universities, China University of Geosciences (Wuhan) ; King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia
源URL[http://ir.igsnrr.ac.cn/handle/311030/202417]  
专题中国科学院地理科学与资源研究所
通讯作者Wang, Yi
作者单位1.China Univ Geosci, Sch Geophys & Geomat, Wuhan 430074, Peoples R China
2.Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, PO Box 217, NL-7500 AE Enschede, Netherlands
3.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Fang, Zhice,Wang, Yi,van Westen, Cees,et al. Landslide hazard spatiotemporal prediction based on data-driven models: Estimating where, when and how large landslide may be[J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,2024,126:13.
APA Fang, Zhice,Wang, Yi,van Westen, Cees,&Lombardo, Luigi.(2024).Landslide hazard spatiotemporal prediction based on data-driven models: Estimating where, when and how large landslide may be.INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION,126,13.
MLA Fang, Zhice,et al."Landslide hazard spatiotemporal prediction based on data-driven models: Estimating where, when and how large landslide may be".INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 126(2024):13.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。