中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive-weighted deep multi-view clustering with uniform scale representation

文献类型:期刊论文

作者Chen, Rui1,2; Tang, Yongqiang2; Zhang, Wensheng1,2; Feng, Wenlong1,3
刊名NEURAL NETWORKS
出版日期2024-03-01
卷号171页码:114-126
关键词Multi-view clustering Deep clustering Adaptive-weighted learning Uniform scale representation
ISSN号0893-6080
DOI10.1016/j.neunet.2023.11.066
通讯作者Tang, Yongqiang(yongqiang.tang@ia.ac.cn) ; Zhang, Wensheng(zhangwenshengia@hotmail.com)
英文摘要Multi-view clustering has attracted growing attention owing to its powerful capacity of multi-source information integration. Although numerous advanced methods have been proposed in past decades, most of them generally fail to distinguish the unequal importance of multiple views to the clustering task and overlook the scale uniformity of learned latent representation among different views, resulting in blurry physical meaning and suboptimal model performance. To address these issues, in this paper, we propose a joint learning framework, termed Adaptive-weighted deep Multi-view Clustering with Uniform scale representation (AMCU). Specifically, to achieve more reasonable multi-view fusion, we introduce an adaptive weighting strategy, which imposes simplex constraints on heterogeneous views for measuring their varying degrees of contribution to consensus prediction. Such a simple yet effective strategy shows its clear physical meaning for the multi view clustering task. Furthermore, a novel regularizer is incorporated to learn multiple latent representations sharing approximately the same scale, so that the objective for calculating clustering loss cannot be sensitive to the views and thus the entire model training process can be guaranteed to be more stable as well. Through comprehensive experiments on eight popular real-world datasets, we demonstrate that our proposal performs better than several state-of-the-art single-view and multi-view competitors.
WOS关键词NONNEGATIVE MATRIX FACTORIZATION
资助项目National Key Research and Develop-ment Program of China[2020AAA0109500] ; National Natural Science Foundation of China[62106266] ; National Natural Science Foundation of China[U22B2048]
WOS研究方向Computer Science ; Neurosciences & Neurology
语种英语
WOS记录号WOS:001139926700001
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构National Key Research and Develop-ment Program of China ; National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/54795]  
专题多模态人工智能系统全国重点实验室
通讯作者Tang, Yongqiang; Zhang, Wensheng
作者单位1.Hainan Univ, Coll Informat Sci & Technol, Haikou 570208, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
3.Hainan Univ, State Key Lab Marine Resource Utilizat South China, Haikou 570208, Peoples R China
推荐引用方式
GB/T 7714
Chen, Rui,Tang, Yongqiang,Zhang, Wensheng,et al. Adaptive-weighted deep multi-view clustering with uniform scale representation[J]. NEURAL NETWORKS,2024,171:114-126.
APA Chen, Rui,Tang, Yongqiang,Zhang, Wensheng,&Feng, Wenlong.(2024).Adaptive-weighted deep multi-view clustering with uniform scale representation.NEURAL NETWORKS,171,114-126.
MLA Chen, Rui,et al."Adaptive-weighted deep multi-view clustering with uniform scale representation".NEURAL NETWORKS 171(2024):114-126.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。