中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
MFAENet: A Multiscale Feature Adaptive Enhancement Network for SAR Image Despeckling

文献类型:期刊论文

作者Liu, Shuaiqi1,2; Zhang, Luyao1; Tian, Shikang1; Hu, Qi3; Li, Bing2; Zhang, Yudong4
刊名IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
出版日期2023
卷号16页码:10420-10433
关键词Adaptive fusion feature enhancement multiscale feature speckle suppression synthetic aperture radar (SAR) images
ISSN号1939-1404
DOI10.1109/JSTARS.2023.3327332
通讯作者Hu, Qi(qihu_hbu@163.com)
英文摘要The existence of speckles in synthetic aperture radar (SAR) images affects its subsequent application in computer vision tasks, so the research of speckle suppression plays a very important role. Convolutional neural networks based speckle suppression algorithms cannot reach a good balance between despeckling effect and structure detail preservation. Considering these issues, a multiscale feature adaptive enhance network for suppressing speckle is proposed. Specifically, an encoder-decoder architecture embedded with multiscale operations is constructed to capture rich contextual information and remove speckles from coarse to fine. Then, deformable convolution is introduced to flexibly adapt changes in ground objects' complex and diverse image features. Also, the constructed feature adaptive mixup module mitigates shallow feature degradation in deep networks by establishing connections between shallow image texture features and deep image semantic features with learnable weights. Experiments on synthetic and real SAR images show that the proposed method produces advanced results regarding visual quality and objective metrics.
资助项目National Natural Science Foundation of China
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:001123950300010
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China
源URL[http://ir.ia.ac.cn/handle/173211/54898]  
专题多模态人工智能系统全国重点实验室
通讯作者Hu, Qi
作者单位1.Hebei Univ, Coll Elect & Informat Engn, Machine Vis Technol Innovat Ctr Hebei Prov, Baoding 071002, Peoples R China
2.Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
3.Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
4.Univ Leicester, Sch Comp & Math, Leicester LE1 7RH, England
推荐引用方式
GB/T 7714
Liu, Shuaiqi,Zhang, Luyao,Tian, Shikang,et al. MFAENet: A Multiscale Feature Adaptive Enhancement Network for SAR Image Despeckling[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2023,16:10420-10433.
APA Liu, Shuaiqi,Zhang, Luyao,Tian, Shikang,Hu, Qi,Li, Bing,&Zhang, Yudong.(2023).MFAENet: A Multiscale Feature Adaptive Enhancement Network for SAR Image Despeckling.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,16,10420-10433.
MLA Liu, Shuaiqi,et al."MFAENet: A Multiscale Feature Adaptive Enhancement Network for SAR Image Despeckling".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 16(2023):10420-10433.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。