中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Reconstruction of structured illumination microscopy with an untrained neural network

文献类型:期刊论文

作者Liu, Xin4; Li, Jinze3; Fang, Xiang4; Li, Jiaoyue4; Zheng, Juanjuan2,4; Li, Jianlang4; Ali, Nauman4; Zuo, Chao1,4; Gao, Peng4; An, Sha4
刊名OPTICS COMMUNICATIONS
出版日期2023-06-15
卷号537
关键词Structured illumination microscopy Deep learning Neural network Super-resolution Image reconstruction
ISSN号0030-4018;1873-0310
DOI10.1016/j.optcom.2023.129431
产权排序3
英文摘要

Structured illumination microscopy (SIM) is one of super-resolution optical microscopic techniques, and it has been widely used in biological research. In this paper, a physics-driven deep image prior framework for super-resolution reconstruction of SIM (entitled DIP-SIM) is proposed. DIP-SIM does not rely on a large number of labeled data, and the output becomes more interpretable due to the intrinsic constraint of a physical model. Both the simulation and experiment verify that DIP-SIM can reconstruct a super-resolution image with a quality comparable to conventional SIM. Of note, it allows for super-resolution reconstruction from three raw images for two-orientation SIM and four raw images for three-orientation SIM, and hence it has a much faster imaging speed and lower photobleaching compared with the traditional SIM. We can envisage that the proposed method can be applied to chemistry and biomedical fields, etc.

语种英语
WOS记录号WOS:001162906900001
出版者ELSEVIER
源URL[http://ir.opt.ac.cn/handle/181661/97228]  
专题西安光学精密机械研究所_瞬态光学技术国家重点实验室
通讯作者Zuo, Chao; Gao, Peng; An, Sha
作者单位1.Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Smart Computat Imaging Lab SCILab, Nanjing, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
3.Xidian Univ, Sch Optoelect Engn, Xian 710071, Peoples R China
4.Xidian Univ, Sch Phys, Xian, Peoples R China
推荐引用方式
GB/T 7714
Liu, Xin,Li, Jinze,Fang, Xiang,et al. Reconstruction of structured illumination microscopy with an untrained neural network[J]. OPTICS COMMUNICATIONS,2023,537.
APA Liu, Xin.,Li, Jinze.,Fang, Xiang.,Li, Jiaoyue.,Zheng, Juanjuan.,...&An, Sha.(2023).Reconstruction of structured illumination microscopy with an untrained neural network.OPTICS COMMUNICATIONS,537.
MLA Liu, Xin,et al."Reconstruction of structured illumination microscopy with an untrained neural network".OPTICS COMMUNICATIONS 537(2023).

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。