中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Feasible spindle speed interval identification method for large aeronautical component robotic milling system

文献类型:期刊论文

作者Wang, Zhanxi3; Zhang, Banghai3; Gao, Wei2; Qin, Xiansheng3; Zhang, Yicha1; Zheng, Chen3
刊名Mechatronics
出版日期2024-05-24
卷号99
ISSN号09574158
关键词Large aeronautical component Milling stability Dynamic characteristics Join-assembly Robotic milling
DOI10.1016/j.mechatronics.2024.103143
产权排序2
英文摘要

Robotic machining systems have been widely implemented in the assembly sites of large components of aircraft, such as wings, aircraft engine rooms, and wing boxes. Milling is the first step in aircraft assembly. It is considered one of the most significant processes because the quality of the subsequent drilling, broaching, and riveting steps depend strongly on the milling accuracy. However, the chatter phenomenon may occur during the milling process because of the low rigidity of the components of the robotic milling system (i.e., robots, shape-preserving holders, and rod parts). This may result in milling failure or even fracture of the robotic milling system. This paper presents a feasible spindle speed interval identification method for large aeronautical component milling systems to eliminate the chatter phenomenon. It is based on the chatter stability model and the analysis results of natural frequency and harmonic response. Firstly, the natural frequencies and harmonics of the main components of the robot milling system are analyzed, and the spindle speed that the milling system needs to avoid is obtained. Then, a flutter stability model considering the instantaneous cutting thickness is established, from which the critical cutting depth corresponding to the spindle speed can be obtained. Finally, the spindle speed interval of the robotic milling system could be optimized based on the results obtained from the chatter stability model and the analysis result of the natural frequency and harmonic response of the milling system. The effectiveness of the proposed spindle speed interval identification method is validated through time-domain simulation and experimental results of the large aeronautical component milling system. © 2024 Elsevier Ltd

语种英语
出版者Elsevier Ltd
源URL[http://ir.opt.ac.cn/handle/181661/97223]  
专题西安光学精密机械研究所_先进光学仪器研究室
通讯作者Zheng, Chen
作者单位1.Mechanical Engineering and Design Department, Université de Bourgogne FrancheComté, Université de Technologie de Belfort Montbéliard, ICB UMR CNRS 6303, Belfort Cedex; 90010, France
2.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China;
3.School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an; 710072, China;
推荐引用方式
GB/T 7714
Wang, Zhanxi,Zhang, Banghai,Gao, Wei,et al. Feasible spindle speed interval identification method for large aeronautical component robotic milling system[J]. Mechatronics,2024,99.
APA Wang, Zhanxi,Zhang, Banghai,Gao, Wei,Qin, Xiansheng,Zhang, Yicha,&Zheng, Chen.(2024).Feasible spindle speed interval identification method for large aeronautical component robotic milling system.Mechatronics,99.
MLA Wang, Zhanxi,et al."Feasible spindle speed interval identification method for large aeronautical component robotic milling system".Mechatronics 99(2024).

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。