Convolutional Neural Network-Based Method for Agriculture Plot Segmentation in Remote Sensing Images
文献类型:期刊论文
作者 | Qi, Liang2; Zuo, Danfeng2; Wang, Yirong2; Tao, Ye2; Tang, Runkang2; Shi, Jiayu2; Gong, Jiajun2; Li, Bangyu1,2![]() |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2024 |
卷号 | 16期号:2页码:22 |
关键词 | plot segmentation convolutional neural networks remote sensing images TransUNet |
DOI | 10.3390/rs16020346 |
通讯作者 | Li, Bangyu(bangyu.li@ia.ac.cn) |
英文摘要 | Accurate delineation of individual agricultural plots, the foundational units for agriculture-based activities, is crucial for effective government oversight of agricultural productivity and land utilization. To improve the accuracy of plot segmentation in high-resolution remote sensing images, the paper collects GF-2 satellite remote sensing images, uses ArcGIS10.3.1 software to establish datasets, and builds UNet, SegNet, DeeplabV3+, and TransUNet neural network frameworks, respectively, for experimental analysis. Then, the TransUNet network with the best segmentation effects is optimized in both the residual module and the skip connection to further improve its performance for plot segmentation in high-resolution remote sensing images. This article introduces Deformable ConvNets in the residual module to improve the original ResNet50 feature extraction network and combines the convolutional block attention module (CBAM) at the skip connection to calculate and improve the skip connection steps. Experimental results indicate that the optimized remote sensing plot segmentation algorithm based on the TransUNet network achieves an Accuracy of 86.02%, a Recall of 83.32%, an F1-score of 84.67%, and an Intersection over Union (IOU) of 86.90%. Compared to the original TransUNet network for remote sensing land parcel segmentation, whose F1-S is 81.94% and whose IoU is 69.41%, the optimized TransUNet network has significantly improved the performance of remote sensing land parcel segmentation, which verifies the effectiveness and reliability of the plot segmentation algorithm. |
资助项目 | Jiangsu Provincial Department of Science and Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:001151565800001 |
出版者 | MDPI |
资助机构 | Jiangsu Provincial Department of Science and Technology |
源URL | [http://ir.ia.ac.cn/handle/173211/55397] ![]() |
专题 | 自动化研究所_空天信息研究中心 自动化研究所_模式识别国家重点实验室_遥感图像处理团队 |
通讯作者 | Li, Bangyu |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Jiangsu Univ Sci & Technol, Sch Automat, Zhenjiang 212003, Peoples R China |
推荐引用方式 GB/T 7714 | Qi, Liang,Zuo, Danfeng,Wang, Yirong,et al. Convolutional Neural Network-Based Method for Agriculture Plot Segmentation in Remote Sensing Images[J]. REMOTE SENSING,2024,16(2):22. |
APA | Qi, Liang.,Zuo, Danfeng.,Wang, Yirong.,Tao, Ye.,Tang, Runkang.,...&Li, Bangyu.(2024).Convolutional Neural Network-Based Method for Agriculture Plot Segmentation in Remote Sensing Images.REMOTE SENSING,16(2),22. |
MLA | Qi, Liang,et al."Convolutional Neural Network-Based Method for Agriculture Plot Segmentation in Remote Sensing Images".REMOTE SENSING 16.2(2024):22. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。