Graph neural network approaches for drug-target interactions
文献类型:期刊论文
作者 | Zhang, Zehong1,2; Chen, Lifan1,2; Zhong, Feisheng1,2; Wang, Dingyan1,2; Jiang, Jiaxin1; Zhang, Sulin1,2; Jiang, Hualiang1,2,3![]() ![]() |
刊名 | CURRENT OPINION IN STRUCTURAL BIOLOGY
![]() |
出版日期 | 2022-04 |
卷号 | 73页码:102327 |
ISSN号 | 0959-440X |
DOI | 10.1016/j.sbi.2021.102327 |
文献子类 | Article |
英文摘要 | Developing new drugs remains prohibitively expensive, time-consuming, and often involves safety issues. Accurate prediction of drug-target interactions (DTIs) can guide the drug discovery process and thus facilitate drug development. Non -Euclidian data such as drug-like molecule structures, key pocket residue structures, and protein interaction networks can be represented effectively using graphs. Therefore, the emerging graph neural network has been rapidly applied to predict DTIs, and proved effective in finding repositioning drugs and accelerating drug discovery. In this review, we provide a brief overview of deep neural networks used in DTI models. Then, we summarize the database required for DTI prediction, followed by a comprehensive introduction of applications of graph neural networks for DTI prediction. We also highlight current challenges and future directions to guide the further development of this field. |
WOS关键词 | KNOWLEDGE ; INFORMATION ; MODEL ; SETS |
WOS研究方向 | Biochemistry & Molecular Biology ; Cell Biology |
语种 | 英语 |
WOS记录号 | WOS:000829027900005 |
出版者 | CURRENT BIOLOGY LTD |
源URL | [http://119.78.100.183/handle/2S10ELR8/309361] ![]() |
专题 | 新药研究国家重点实验室 |
通讯作者 | Zheng, Mingyue; Li, Xutong |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Drug Discovery & Design Ctr, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China; 2.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China; 3.ShanghaiTech Univ, Sch Life Sci & Technol, 393 Huaxiazhong Rd, Shanghai 200031, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Zehong,Chen, Lifan,Zhong, Feisheng,et al. Graph neural network approaches for drug-target interactions[J]. CURRENT OPINION IN STRUCTURAL BIOLOGY,2022,73:102327. |
APA | Zhang, Zehong.,Chen, Lifan.,Zhong, Feisheng.,Wang, Dingyan.,Jiang, Jiaxin.,...&Li, Xutong.(2022).Graph neural network approaches for drug-target interactions.CURRENT OPINION IN STRUCTURAL BIOLOGY,73,102327. |
MLA | Zhang, Zehong,et al."Graph neural network approaches for drug-target interactions".CURRENT OPINION IN STRUCTURAL BIOLOGY 73(2022):102327. |
入库方式: OAI收割
来源:上海药物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。