基于混合数据增强的MSWI过程燃烧状态识别
文献类型:期刊论文
作者 | 郭海涛; 汤健; 丁海旭; 乔俊飞 |
刊名 | 自动化学报
![]() |
出版日期 | 2024 |
卷号 | 50期号:3页码:560-575 |
关键词 | 城市固废焚烧 深度卷积生成对抗网络 燃烧状态识别 非生成式数据增强 混合数据增强 |
ISSN号 | 0254-4156 |
DOI | 10.16383/j.aas.c210843 |
英文摘要 | 国内城市固废焚烧(Municipal solid waste incineration, MSWI)过程通常依靠运行专家观察炉内火焰识别燃烧状态后再结合自身经验修正控制策略以维持稳定燃烧,存在智能化水平低、识别结果具有主观性与随意性等问题.由于MSWI过程的火焰图像具有强污染、多噪声等特性,并且存在异常工况数据较为稀缺等问题,导致传统目标识别方法难以适用.对此,提出一种基于混合数据增强的MSWI过程燃烧状态识别方法.首先,结合领域专家经验与焚烧炉排结构对燃烧状态进行标定;接着,设计由粗调和精调两级组成的深度卷积生成对抗网络(Deep convolutional generative adversarial network, DCGAN)以获取多工况火焰图像;然后,采用弗雷歇距离(Fréchet inception distance, FID)对生成式样本进行自适应选择;最后,通过非生成式数据增强对样本进行再次扩充,获得混合增强数据构建卷积神经网络以识别燃烧状态.基于某MSWI电厂实际运行数据实验,表明该方法有效地提高了识别网络的泛化性与鲁棒性,具有良好的识别精度. |
源URL | [http://ir.ia.ac.cn/handle/173211/55731] ![]() |
专题 | 自动化研究所_学术期刊_自动化学报 |
推荐引用方式 GB/T 7714 | 郭海涛,汤健,丁海旭,等. 基于混合数据增强的MSWI过程燃烧状态识别[J]. 自动化学报,2024,50(3):560-575. |
APA | 郭海涛,汤健,丁海旭,&乔俊飞.(2024).基于混合数据增强的MSWI过程燃烧状态识别.自动化学报,50(3),560-575. |
MLA | 郭海涛,et al."基于混合数据增强的MSWI过程燃烧状态识别".自动化学报 50.3(2024):560-575. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。