中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Nonlinear Split-Window Algorithm for Retrieving Land Surface Temperatures From Fengyun-4B Thermal Infrared Data

文献类型:期刊论文

作者Zhao, Junli1,2; Tang, Bo-Hui1,2; Sima, Ouyang1,2,3
刊名IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
出版日期2024
卷号62页码:12
关键词Atmospheric modeling Land surface temperature Satellites Ocean temperature Land surface Temperature distribution Sea surface Fengyun-4B (FY-4B) land surface temperature (LST) nonlinear split-window (NSW) algorithm temperature and emissivity separation (TES)
ISSN号0196-2892
DOI10.1109/TGRS.2023.3348526
通讯作者Tang, Bo-Hui(tangbh@kust.edu.cn)
英文摘要This article proposes a combination method of nonlinear split-window (NSW) algorithm and temperature and emissivity separation (TES) algorithm to estimate land surface temperature (LST) from the remotely sensed data observed by the Advanced Geosynchronous Radiation Imager (AGRI) onboard Fengyun-4B (FY-4B), China's second-generation meteorological geostationary satellite. The atmospheric radiation transfer model MODTRAN5.2 is used to simulate the AGRI thermal infrared (TIR) channel satellite observations in ten different viewing zenith angles (VZAs) from 0 degrees to 70 degrees. The optimal thermal channel combination and coefficients of the NSW algorithm are determined using a statistical regression method according to the grouping of the mean emissivity, the atmospheric water vapor content (WVC), and the LST. ERA5 reanalysis data provide atmospheric profiles for atmospheric correction, and then, the land surface emissivity (LSE) could be estimated according to the TES algorithm. The combination of Channel-12 (centered at 8.55 mu m ) and Channel-14 (centered at 12.00 mu m ) or the combination of Channel-13 (centered at 10.80 mu m ) and Channel-14 (centered at 12.00 mu m ) depends on different groups and VZAs. The statistical regression analysis showed that the root-mean-square error (RMSE) between the simulated and estimated LST is less than 0.7 and 1.8 K with the determined emissivity under VZA = 0 degrees and VZA = 60 degrees, respectively. Compared with the MODIS LST products (MYD11A1), the retrieved LST image has a similar spatial distribution, with the RMSE of 1.71 K.
WOS关键词EMISSIVITY ; WATER ; VALIDATION ; ASTER
资助项目National Natural Science Foundation of China
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:001166445400017
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/203568]  
专题中国科学院地理科学与资源研究所
通讯作者Tang, Bo-Hui
作者单位1.Kunming Univ Sci & Technol, Fac Land Resource Engn, Kunming 650093, Peoples R China
2.Dept Educ Yunnan Prov, Key Lab Plateau Remote Sensing, Kunming 650093, Peoples R China
3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Junli,Tang, Bo-Hui,Sima, Ouyang. A Nonlinear Split-Window Algorithm for Retrieving Land Surface Temperatures From Fengyun-4B Thermal Infrared Data[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2024,62:12.
APA Zhao, Junli,Tang, Bo-Hui,&Sima, Ouyang.(2024).A Nonlinear Split-Window Algorithm for Retrieving Land Surface Temperatures From Fengyun-4B Thermal Infrared Data.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,62,12.
MLA Zhao, Junli,et al."A Nonlinear Split-Window Algorithm for Retrieving Land Surface Temperatures From Fengyun-4B Thermal Infrared Data".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62(2024):12.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。