中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Optimizing Rice Field Mapping in the Northern Region of China: An Asynchronous Flooding Signal and Object-Based Method

文献类型:期刊论文

作者Li, Long1; Zhou, Daoqin2; Liu, Kai1; Shi, Tian2; Xie, Chou3; Wang, Shudong1; Li, Hang1; Dong, Guannan4; Li, Xueke5
刊名IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
出版日期2024
卷号17页码:3821-3835
关键词Google earth engine paddy field mapping phenology simple noniterative clustering (SNIC) and object-based
ISSN号1939-1404
DOI10.1109/JSTARS.2024.3357141
通讯作者Liu, Kai(liuk@aircas.ac.cn) ; Shi, Tian(783683980@qq.com)
英文摘要Accurate delineation of paddy fields holds importance in ensuring food security, efficient water resource management, and precise evaluation of greenhouse gas emissions. Here we propose an innovative approach, the asynchronous flooding and object-based (AF-OB) model, aimed at optimizing phenology-based paddy field mapping. The AF-OB model capitalizes on the asynchronous flooding phenomenon observed between paddy fields and nonpaddy fields, along with the seasonal variations in the normalized difference vegetation index. The simple noniterative clustering algorithm is integrated to mitigate the common issue of the "pretzel effect" encountered in paddy field mapping. Evaluation through independent samples yields compelling results, with the paddy field map generated by the AF-OB method achieving an overall accuracy of 94.28%. The paddy fields extracted using the AF-OB method exhibit alignment with statistical data, surpassing comparable algorithms relying on alternative land use products in terms of visual quality. Furthermore, the AF-OB model exhibits stability across time, space, and sensors, thus enhancing its applicability and robustness. The outputs of the AF-OB method offer reference data for informed agricultural production planning and the effective management of water resources.
WOS关键词LANDSAT 8 OLI ; PADDY RICE ; SURFACE MOISTURE ; PLANTING AREA ; WATER-STRESS ; MACHINE ; CLASSIFICATION ; PHENOLOGY ; DELTA ; ASIA
资助项目National Natural Science Foundation of China
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
语种英语
WOS记录号WOS:001174145400002
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/203646]  
专题中国科学院地理科学与资源研究所
通讯作者Liu, Kai; Shi, Tian
作者单位1.Chinese Acad Sci, State Key Lab Remote Sensing Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
2.Third Surveying & Mapping Inst Guizhou Prov, Guiyang 550000, Peoples R China
3.Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
4.Chinese Acad Sci, Inst Geog Sci & Nat Resources, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
5.Univ Penn, Dept Earth & Environm Sci, Philadelphia, PA 19104 USA
推荐引用方式
GB/T 7714
Li, Long,Zhou, Daoqin,Liu, Kai,et al. Optimizing Rice Field Mapping in the Northern Region of China: An Asynchronous Flooding Signal and Object-Based Method[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2024,17:3821-3835.
APA Li, Long.,Zhou, Daoqin.,Liu, Kai.,Shi, Tian.,Xie, Chou.,...&Li, Xueke.(2024).Optimizing Rice Field Mapping in the Northern Region of China: An Asynchronous Flooding Signal and Object-Based Method.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,17,3821-3835.
MLA Li, Long,et al."Optimizing Rice Field Mapping in the Northern Region of China: An Asynchronous Flooding Signal and Object-Based Method".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 17(2024):3821-3835.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。