中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Landslide spatial prediction using cluster analysis

文献类型:期刊论文

作者Zhao, Zheng2; Lan, Hengxing1,3; Li, Langping2; Strom, Alexander4
刊名GONDWANA RESEARCH
出版日期2024-06-01
卷号130页码:291-307
关键词Landslide Spatial prediction Susceptibility Temporal clustering
DOI10.1016/j.gr.2024.02.006
产权排序1
文献子类Article
英文摘要Temporal clustering is an intrinsic nature of landslide occurrences, therefore it should be considered in data-driven landslide spatial prediction (i.e., susceptibility assessment). However, it remains problematic regarding how to determine landslide temporal clusters and how to integrate susceptibility maps derived from different landslide temporal clusters. In this paper, a general framework of landslide spatial prediction model considering the temporal clustering of landslides is proposed. This novel framework first assesses landslide susceptibility separately based on each landslide temporal cluster identified by spatiotemporal clustering analysis and then integrates separate assessments by weighted averaging. In a case study, this general framework is implemented using the stacking network landslide susceptibility assessment method and used in the landslide spatial prediction of the Sanming City and Wenchuan seismic areas. The results show that the proposed framework outperformed traditional susceptibility models that do not consider landslide temporal clustering, and the integration of susceptibility models based on all landslide temporal clusters will promote the performance of landslide spatial prediction because levels of knowledge in long-term spatiotemporal landslide activities are considered. This novel general framework highlights the benefit of considering landslide temporal clustering in landslide spatial prediction and can provide better support for landslide risk management. (c) 2024 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
WOS关键词WENCHUAN EARTHQUAKE ; PATH DEPENDENCY ; SUSCEPTIBILITY ASSESSMENT ; NEURAL-NETWORKS ; AREA ; ENSEMBLES ; SELECTION ; CLIMATE ; EVENTS ; FOREST
WOS研究方向Geology
语种英语
WOS记录号WOS:001202338900001
出版者ELSEVIER
源URL[http://ir.igsnrr.ac.cn/handle/311030/204817]  
专题资源与环境信息系统国家重点实验室_外文论文
作者单位1.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
2.Changan Univ, Sch Geol Engn & Geomatics, Xian 710064, Peoples R China
3.Univ Chinese Acad Sci, Beijing 10049, Peoples R China
4.Changan Univ, Key Lab Ecol Geol & Disaster Prevent, Minist Nat Resources, Xian 710064, Peoples R China
5.JSC Hydroproject Inst, Moscow 125993, Russia
推荐引用方式
GB/T 7714
Zhao, Zheng,Lan, Hengxing,Li, Langping,et al. Landslide spatial prediction using cluster analysis[J]. GONDWANA RESEARCH,2024,130:291-307.
APA Zhao, Zheng,Lan, Hengxing,Li, Langping,&Strom, Alexander.(2024).Landslide spatial prediction using cluster analysis.GONDWANA RESEARCH,130,291-307.
MLA Zhao, Zheng,et al."Landslide spatial prediction using cluster analysis".GONDWANA RESEARCH 130(2024):291-307.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。