DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining
文献类型:期刊论文
作者 | Zhuang, Yi-Min1,2; Hu, Xing2; Chen, Xiao-Bing1,2; Zhi, Tian2 |
刊名 | JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY
![]() |
出版日期 | 2023-07-01 |
卷号 | 38期号:4页码:899-910 |
关键词 | dynamic neural network (NN) deep neural network (DNN) accelerator dynamic pipelining |
ISSN号 | 1000-9000 |
DOI | 10.1007/s11390-021-1161-y |
英文摘要 | Dynamic neural network (NN) techniques are increasingly important because they facilitate deep learning techniques with more complex network architectures. However, existing studies, which predominantly optimize the static computational graphs by static scheduling methods, usually focus on optimizing static neural networks in deep neural network (DNN) accelerators. We analyze the execution process of dynamic neural networks and observe that dynamic features introduce challenges for efficient scheduling and pipelining in existing DNN accelerators. We propose DyPipe, a holistic approach to optimizing dynamic neural network inferences in enhanced DNN accelerators. DyPipe achieves significant performance improvements for dynamic neural networks while it introduces negligible overhead for static neural networks. Our evaluation demonstrates that DyPipe achieves 1.7x speedup on dynamic neural networks and maintains more than 96% performance for static neural networks. |
资助项目 | Beijing Natural Science Foundation[JQ18013] ; National Natural Science Foundation of China[61925208] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61732002] ; National Natural Science Foundation of China[61906179] ; Strategic Priority Research Program of Chinese Academy of Sciences (CAS)[XDB32050200] ; Youth Innovation Promotion Association CAS ; Beijing Academy of Artificial Intelligence (BAAI) ; Xplore Prize |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001102032000012 |
出版者 | SPRINGER SINGAPORE PTE LTD |
源URL | [http://119.78.100.204/handle/2XEOYT63/38065] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Zhi, Tian |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Processors, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Zhuang, Yi-Min,Hu, Xing,Chen, Xiao-Bing,et al. DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining[J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,2023,38(4):899-910. |
APA | Zhuang, Yi-Min,Hu, Xing,Chen, Xiao-Bing,&Zhi, Tian.(2023).DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining.JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY,38(4),899-910. |
MLA | Zhuang, Yi-Min,et al."DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining".JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38.4(2023):899-910. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。