DPQ: dynamic pseudo-mean mixed-precision quantization for pruned neural network
文献类型:期刊论文
作者 | Pei, Songwen1,2,3; Wang, Jiyao3; Zhang, Bingxue3; Qin, Wei3; Xue, Hai3; Ye, Xiaochun2; Chen, Mingsong1 |
刊名 | MACHINE LEARNING
![]() |
出版日期 | 2024-01-31 |
页码 | 14 |
关键词 | Big data Compression Deep learning Pseudo-mean mixed-precision quantization Pruned neural network |
ISSN号 | 0885-6125 |
DOI | 10.1007/s10994-023-06453-3 |
英文摘要 | The ever-increasing layers and hyper-parameters of deep neural network are continuously growing to generate large-scale network by training huge masses of data. However, it is difficult to deploy deep neural network on resource-constrained edge devices. Network mixed-precision quantization is a challenging way to prune and compress deep neural network models while discovering the optimal bit width for each layer. To solve the big challenge, we therefore propose the dynamic pseudo-mean mixed-precision quantization (DPQ) by introducing two-bit scaling factors to compensate errors of quantization. Furthermore, the activation quantization named random parameters clipping (RPC) is proposed. RPC adopts partial activation quantization to reduce loss of accuracy. Therefore, DPQ can dynamically adjust the bit precision of weight quantization according to the distribution of weights. It results in a quantification scheme with strong robustness compared to previous methods. Extensive experiments demonstrate that DPQ achieves 15.43x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} compression rate of ResNet20 on CIFAR-10 dataset with 0.22% increase in accuracy, and 35.25x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} compression rate of Resnet56 on SVHN dataset with 0.12% increase in accuracy. |
资助项目 | National Natural Science Foundation of China[61975124] ; National Natural Science Foundation of China[20ZR1438500] ; Shanghai Natural Science Foundation[CARCHA202111] ; State Key Laboratory of Computer Architecture (ICT, CAS)[OP202202] ; Engineering Research Center of Software/Hardware Co-design Technology and Application, Ministry of Education, East China Normal University |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:001151730300001 |
出版者 | SPRINGER |
源URL | [http://119.78.100.204/handle/2XEOYT63/38401] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Pei, Songwen |
作者单位 | 1.East China Normal Univ, Software Hardware Codesign Technol & Applicat, Minist Educ, Engn Res Ctr, Shanghai 200062, Peoples R China 2.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing 100190, Peoples R China 3.Univ Shanghai Sci & Technol, Sch Opt Elect & Comp Engn, Shanghai 200093, Peoples R China |
推荐引用方式 GB/T 7714 | Pei, Songwen,Wang, Jiyao,Zhang, Bingxue,et al. DPQ: dynamic pseudo-mean mixed-precision quantization for pruned neural network[J]. MACHINE LEARNING,2024:14. |
APA | Pei, Songwen.,Wang, Jiyao.,Zhang, Bingxue.,Qin, Wei.,Xue, Hai.,...&Chen, Mingsong.(2024).DPQ: dynamic pseudo-mean mixed-precision quantization for pruned neural network.MACHINE LEARNING,14. |
MLA | Pei, Songwen,et al."DPQ: dynamic pseudo-mean mixed-precision quantization for pruned neural network".MACHINE LEARNING (2024):14. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。