中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Streamlining spatial omics data analysis with Pysodb

文献类型:期刊论文

作者Lin, Senlin4,5; Zhao, Fangyuan4,5; Wu, Zihan3; Yao, Jianhua3; Zhao, Yi4,5; Yuan, Zhiyuan1,2
刊名NATURE PROTOCOLS
出版日期2023-12-22
页码72
ISSN号1754-2189
DOI10.1038/s41596-023-00925-5
英文摘要Advances in spatial omics technologies have improved the understanding of cellular organization in tissues, leading to the generation of complex and heterogeneous data and prompting the development of specialized tools for managing, loading and visualizing spatial omics data. The Spatial Omics Database (SODB) was established to offer a unified format for data storage and interactive visualization modules. Here we detail the use of Pysodb, a Python-based tool designed to enable the efficient exploration and loading of spatial datasets from SODB within a Python environment. We present seven case studies using Pysodb, detailing the interaction with various computational methods, ensuring reproducibility of experimental data and facilitating the integration of new data and alternative applications in SODB. The approach offers a reference for method developers by outlining label and metadata availability in representative spatial data that can be loaded by Pysodb. The tool is supplemented by a website (https://protocols-pysodb.readthedocs.io/) with detailed information for benchmarking analysis, and allows method developers to focus on computational models by facilitating data processing. This protocol is designed for researchers with limited experience in computational biology. Depending on the dataset complexity, the protocol typically requires similar to 12 h to complete.
资助项目Chenguang Program of Shanghai Education Development Foundation ; Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission, Shanghai Science and Technology Development Funds[23YF1403000] ; Tencent AI Lab Rhino-Bird Focused Research Program[RBFR2023008] ; Shanghai Municipal Science and Technology Major Project[2018SHZDZX01]
WOS研究方向Biochemistry & Molecular Biology
语种英语
WOS记录号WOS:001130466600001
出版者NATURE PORTFOLIO
源URL[http://119.78.100.204/handle/2XEOYT63/38425]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Zhao, Yi; Yuan, Zhiyuan
作者单位1.Fudan Univ, Pudong Med Ctr, Shanghai Pudong Hosp, Ctr Med Res & Innovat, Shanghai, Peoples R China
2.Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, MOE Frontiers Ctr Brain Sci, MOE Key Lab Computat Neurosci & Brain Inspired Int, Shanghai, Peoples R China
3.Tencent AI Lab, Shenzhen, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
5.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Lin, Senlin,Zhao, Fangyuan,Wu, Zihan,et al. Streamlining spatial omics data analysis with Pysodb[J]. NATURE PROTOCOLS,2023:72.
APA Lin, Senlin,Zhao, Fangyuan,Wu, Zihan,Yao, Jianhua,Zhao, Yi,&Yuan, Zhiyuan.(2023).Streamlining spatial omics data analysis with Pysodb.NATURE PROTOCOLS,72.
MLA Lin, Senlin,et al."Streamlining spatial omics data analysis with Pysodb".NATURE PROTOCOLS (2023):72.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。