DockingGA: enhancing targeted molecule generation using transformer neural network and genetic algorithm with docking simulation
文献类型:期刊论文
作者 | Gao, Changnan8; Bao, Wenjie7; Wang, Shuang5,6; Zheng, Jianyang8; Wang, Lulu8; Ren, Yongqi8; Jiao, Linfang8; Wang, Jianmin1,3,4; Wang, Xun2,5 |
刊名 | BRIEFINGS IN FUNCTIONAL GENOMICS
![]() |
出版日期 | 2024-04-06 |
页码 | 12 |
关键词 | molecule generation molecule optimization drug discovery deep learning drug design genetic algorithm |
ISSN号 | 2041-2649 |
DOI | 10.1093/bfgp/elae011 |
英文摘要 | Generative molecular models generate novel molecules with desired properties by searching chemical space. Traditional combinatorial optimization methods, such as genetic algorithms, have demonstrated superior performance in various molecular optimization tasks. However, these methods do not utilize docking simulation to inform the design process, and heavy dependence on the quality and quantity of available data, as well as require additional structural optimization to become candidate drugs. To address this limitation, we propose a novel model named DockingGA that combines Transformer neural networks and genetic algorithms to generate molecules with better binding affinity for specific targets. In order to generate high quality molecules, we chose the Self-referencing Chemical Structure Strings to represent the molecule and optimize the binding affinity of the molecules to different targets. Compared to other baseline models, DockingGA proves to be the optimal model in all docking results for the top 1, 10 and 100 molecules, while maintaining 100% novelty. Furthermore, the distribution of physicochemical properties demonstrates the ability of DockingGA to generate molecules with favorable and appropriate properties. This innovation creates new opportunities for the application of generative models in practical drug discovery. |
资助项目 | National Key Research and Development Project of China[2021YFA1000103] ; National Key Research and Development Project of China[2021YFA1000100] ; China National Postdoctoral Program for Innovative Talents[BX2021320] ; National Natural Science Foundation of China[61972416] ; National Natural Science Foundation of China[62272479] ; National Natural Science Foundation of China[62202498] ; Taishan Scholarship[tsqn201812029] ; Foundation of Science and Technology Development of Jinan[201907116] ; Shandong Provincial Natural Science Foundation[ZR2021QF023] ; Fundamental Research Funds for the Central Universities[21CX06018A] ; Spanish project[PID2019-106960GB-I00] ; Juan de la Cierva[IJC2018-038539-I] |
WOS研究方向 | Biotechnology & Applied Microbiology ; Genetics & Heredity |
语种 | 英语 |
WOS记录号 | WOS:001197650800001 |
出版者 | OXFORD UNIV PRESS |
源URL | [http://119.78.100.204/handle/2XEOYT63/38752] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang, Jianmin; Wang, Xun |
作者单位 | 1.Yonsei Univ, Dept Integrat Biotechnol, Interdisciplinary Grad Program Integrat Biotechnol, 214 Veritas Hall,85 Songdogwahak Ro, Incheon 21983, South Korea 2.China Univ Petr East China, Inst Comp Sci & Technol, 66 West Changjiang Rd, Qingdao, Peoples R China 3.Chinese Acad Sci, Inst Comp Technol, China High Performance Comp Res Ctr, Beijing, Peoples R China 4.Yonsei Univ, Seoul, South Korea 5.China Univ Petr, Coll Comp Sci & Technol, Qingdao, Peoples R China 6.Ocean Univ China, Coll Comp Sci & Technol, Qingdao, Peoples R China 7.Peking Univ, Beijing, Peoples R China 8.China Univ Petr East China, Dongying, Peoples R China |
推荐引用方式 GB/T 7714 | Gao, Changnan,Bao, Wenjie,Wang, Shuang,et al. DockingGA: enhancing targeted molecule generation using transformer neural network and genetic algorithm with docking simulation[J]. BRIEFINGS IN FUNCTIONAL GENOMICS,2024:12. |
APA | Gao, Changnan.,Bao, Wenjie.,Wang, Shuang.,Zheng, Jianyang.,Wang, Lulu.,...&Wang, Xun.(2024).DockingGA: enhancing targeted molecule generation using transformer neural network and genetic algorithm with docking simulation.BRIEFINGS IN FUNCTIONAL GENOMICS,12. |
MLA | Gao, Changnan,et al."DockingGA: enhancing targeted molecule generation using transformer neural network and genetic algorithm with docking simulation".BRIEFINGS IN FUNCTIONAL GENOMICS (2024):12. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。