AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge
文献类型:期刊论文
作者 | de Vente, Coen29,30,31; Vermeer, Koenraad A.28; Jaccard, Nicolas27; Wang, He25,26; Sun, Hongyi24; Khader, Firas23; Truhn, Daniel23; Aimyshev, Temirgali22; Zhanibekuly, Yerkebulan22; Le, Tien-Dung21 |
刊名 | IEEE TRANSACTIONS ON MEDICAL IMAGING
![]() |
出版日期 | 2024 |
卷号 | 43期号:1页码:542-557 |
关键词 | Color fundus photography glaucoma screening out-of-distribution detection retina robustness |
ISSN号 | 0278-0062 |
DOI | 10.1109/TMI.2023.3313786 |
英文摘要 | The early detection of glaucoma is essential in preventing visual impairment. Artificial intelligence (AI) can be used to analyze color fundus photographs (CFPs) in a cost-effective manner, making glaucoma screening more accessible. While AI models for glaucoma screening from CFPs have shown promising results in laboratory settings, their performance decreases significantly in real-world scenarios due to the presence of out-of-distribution and low-quality images. To address this issue, we propose the Artificial Intelligence for Robust Glaucoma Screening (AIROGS) challenge. This challenge includes a large dataset of around 113,000 images from about 60,000 patients and 500 different screening centers, and encourages the development of algorithms that are robust to ungradable and unexpected input data. We evaluated solutions from 14 teams in this paper and found that the best teams performed similarly to a set of 20 expert ophthalmologists and optometrists. The highest-scoring team achieved an area under the receiver operating characteristic curve of 0.99 (95% CI: 0.98-0.99) for detecting ungradable images on-the-fly. Additionally, many of the algorithms showed robust performance when tested on three other publicly available datasets. These results demonstrate the feasibility of robust AI-enabled glaucoma screening. |
资助项目 | Eurostars |
WOS研究方向 | Computer Science ; Engineering ; Imaging Science & Photographic Technology ; Radiology, Nuclear Medicine & Medical Imaging |
语种 | 英语 |
WOS记录号 | WOS:001158081600018 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://119.78.100.204/handle/2XEOYT63/38814] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | de Vente, Coen |
作者单位 | 1.Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 3125, Australia 2.Kings Coll London, Dept Biomed Engn, London, England 3.Mayo Clin, Dept Artificial Intelligence & Informat, Jacksonville, FL 32224 USA 4.Sungkyunkwan Univ, Samsung Med Ctr, Samsung Adv Inst Hlth Sci & Technol SAIHST, Dept Digital Hlth, Seoul 06351, South Korea 5.Samsung Med Ctr, Res Inst Future Med, Seoul 06351, South Korea 6.UCL, Inst Ophthalmol, London EC1V 9EL, England 7.Med Univ Vienna, Dept Ophthalmol & Optometry, Christian Doppler Lab Artificial Intelligence Reti, A-1090 Vienna, Austria 8.UPRetina, Barcelona 08195, Spain 9.Hosp Valle De Hebron, Sant Cugat Del Valles 08195, Spain 10.Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain |
推荐引用方式 GB/T 7714 | de Vente, Coen,Vermeer, Koenraad A.,Jaccard, Nicolas,et al. AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge[J]. IEEE TRANSACTIONS ON MEDICAL IMAGING,2024,43(1):542-557. |
APA | de Vente, Coen.,Vermeer, Koenraad A..,Jaccard, Nicolas.,Wang, He.,Sun, Hongyi.,...&Sanchez, Clara I..(2024).AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge.IEEE TRANSACTIONS ON MEDICAL IMAGING,43(1),542-557. |
MLA | de Vente, Coen,et al."AIROGS: Artificial Intelligence for Robust Glaucoma Screening Challenge".IEEE TRANSACTIONS ON MEDICAL IMAGING 43.1(2024):542-557. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。