Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes
文献类型:期刊论文
作者 | Zhe, Mengqing; Zhang, Le; Liu, Fang![]() |
刊名 | PLANT DIVERSITY
![]() |
出版日期 | 2022 |
卷号 | 44期号:3页码:316-321 |
关键词 | RNA editing Plastomes ndh genes Lifestyle CRASSULACEAN ACID METABOLISM ORCHIDACEAE ALIGNMENT GENOME |
DOI | 10.1016/j.pld.2021.07.002 |
英文摘要 | Recent sequencing efforts have broadly uncovered the evolutionary trajectory of plastid genomes (plastomes) of flowering plants in diverse habitats, yet our knowledge of the evolution of plastid posttranscriptional modifications is limited. In this study, we generated 11 complete plastomes and performed ultra-deep transcriptome sequencing to investigate the co-evolution of plastid RNA editing and genetic variation in Cymbidium, a genus with diverse trophic lifestyles. Genome size and gene content is reduced in terrestrial and green mycoheterotrophic orchids relative to their epiphytic relatives. This could be partly due to extensive losses and pseudogenization of ndh genes for the plastid NADH dehydrogenase-like complex, but independent pseudogenization of ndh genes has also occurred in the epiphyte C. mannii, which was reported to use strong crassulacean acid metabolism photosynthesis. RNA editing sites are abundant but variable in number among Cymbidium plastomes. The nearly twofold variation in editing abundance is mainly due to extensive reduction of ancestral editing sites in ndh transcripts of terrestrial, mycoheterotrophic, and C. mannii plastomes. The co-occurrence of editing reduction and pseudogenization in ndh genes suggests functional constraints on editing machinery may be relaxed, leading to nonrandom loss of ancestral edited sites via reduced editing efficiency. This study represents the first systematic examination of RNA editing evolution linked to plastid genome variation in a single genus. We also propose an explanation for how genomic and posttranscriptional variations might be affected by lifestyle-associated ecological adaptation strategies in Cymbidium. Copyright (c) 2021 Kunming Institute of Botany, Chinese Academy of Sciences. |
WOS记录号 | WOS:000814158000010 |
源URL | [http://ir.kib.ac.cn/handle/151853/74775] ![]() |
专题 | 中国科学院昆明植物研究所 |
推荐引用方式 GB/T 7714 | Zhe, Mengqing,Zhang, Le,Liu, Fang,et al. Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes[J]. PLANT DIVERSITY,2022,44(3):316-321. |
APA | Zhe, Mengqing.,Zhang, Le.,Liu, Fang.,Huang, Yiwei.,Fan, Weishu.,...&Zhu, Andan.(2022).Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes.PLANT DIVERSITY,44(3),316-321. |
MLA | Zhe, Mengqing,et al."Plastid RNA editing reduction accompanied with genetic variations in Cymbidium, a genus with diverse lifestyle modes".PLANT DIVERSITY 44.3(2022):316-321. |
入库方式: OAI收割
来源:昆明植物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。