中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
KinomeMETA: meta-learning enhanced kinome-wide polypharmacology profiling

文献类型:期刊论文

作者Ren, Qun5,6; Qu, Ning5; Sun, Jingjing5; Zhou, Jingyi4; Liu, Jin3; Ni, Lin5,6; Tong, Xiaochu5; Zhang, Zimei5; Kong, Xiangtai5; Wen, Yiming2
刊名BRIEFINGS IN BIOINFORMATICS
出版日期2024
卷号25期号:1页码:15
关键词kinome profiling kinase inhibitors polypharmacology deep learning meta-learning
ISSN号1467-5463
DOI10.1093/bib/bbad461
通讯作者Zheng, Mingyue(myzheng@simm.ac.cn) ; Li, Xutong(lixutong@simm.ac.cn)
英文摘要Kinase inhibitors are crucial in cancer treatment, but drug resistance and side effects hinder the development of effective drugs. To address these challenges, it is essential to analyze the polypharmacology of kinase inhibitor and identify compound with high selectivity profile. This study presents KinomeMETA, a framework for profiling the activity of small molecule kinase inhibitors across a panel of 661 kinases. By training a meta-learner based on a graph neural network and fine-tuning it to create kinase-specific learners, KinomeMETA outperforms benchmark multi-task models and other kinase profiling models. It provides higher accuracy for understudied kinases with limited known data and broader coverage of kinase types, including important mutant kinases. Case studies on the discovery of new scaffold inhibitors for membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase and selective inhibitors for fibroblast growth factor receptors demonstrate the role of KinomeMETA in virtual screening and kinome-wide activity profiling. Overall, KinomeMETA has the potential to accelerate kinase drug discovery by more effectively exploring the kinase polypharmacology landscape.
WOS关键词BIOLOGICAL EVALUATION ; KINASE INHIBITORS ; DESIGN ; DERIVATIVES ; TARGETS
资助项目National Key Research and Development Program of China[2022YFC3400504] ; National Natural Science Foundation of China[T2225002] ; National Natural Science Foundation of China[82273855] ; National Natural Science Foundation of China[82204278] ; Lingang Laboratory[LG202102-01-02] ; SIMM-SHUTCMTraditional Chinese Medicine Innovation Joint Research Program[E2G805H] ; China Postdoctoral Science Foundation[2022 M720153] ; Shanghai Municipal Science and Technology Major Project
WOS研究方向Biochemistry & Molecular Biology ; Mathematical & Computational Biology
语种英语
WOS记录号WOS:001173375300093
出版者OXFORD UNIV PRESS
源URL[http://119.78.100.183/handle/2S10ELR8/310145]  
专题新药研究国家重点实验室
通讯作者Zheng, Mingyue; Li, Xutong
作者单位1.Lingang Lab, Lingang, Peoples R China
2.Hangzhou Inst Adv Study, Pharmaceut Sci & Technol, Hangzhou, Peoples R China
3.Zhejiang Univ, Coll Pharmaceut Sci, Hangzhou, Peoples R China
4.ShanghaiTech Univ, Shanghai, Peoples R China
5.Shanghai Inst Mat Med, Shanghai, Peoples R China
6.Nanjing Univ Chinese Med, Nanjing, Peoples R China
7.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
8.Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Drug Discovery & DesignCenter, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
9.Hangzhou Inst Adv Study, Sch Pharmaceut Sci & Technol, Hangzhou 330106, Peoples R China
10.Nanjing Univ Chinese Med, 138 Xianlin Rd, Nanjing 210023, Peoples R China
推荐引用方式
GB/T 7714
Ren, Qun,Qu, Ning,Sun, Jingjing,et al. KinomeMETA: meta-learning enhanced kinome-wide polypharmacology profiling[J]. BRIEFINGS IN BIOINFORMATICS,2024,25(1):15.
APA Ren, Qun.,Qu, Ning.,Sun, Jingjing.,Zhou, Jingyi.,Liu, Jin.,...&Li, Xutong.(2024).KinomeMETA: meta-learning enhanced kinome-wide polypharmacology profiling.BRIEFINGS IN BIOINFORMATICS,25(1),15.
MLA Ren, Qun,et al."KinomeMETA: meta-learning enhanced kinome-wide polypharmacology profiling".BRIEFINGS IN BIOINFORMATICS 25.1(2024):15.

入库方式: OAI收割

来源:上海药物研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。