中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Machine Learning-Accelerated First-Principles Study of Atomic Configuration and Ionic Diffusion in Li10GeP2S12 Solid Electrolyte

文献类型:期刊论文

作者Qi, Changlin5,6; Zhou, Yuwei4,6; Yuan XZ(袁晓泽)3,5; Peng Q(彭庆)1,2,3; Yang, Yong4,6; Li, Yongwang4; Wen, Xiaodong4,5,6
刊名MATERIALS
出版日期2024-04-01
卷号17期号:8页码:14
关键词Li10GeP2S12 solid electrolyte first-principles calculation Ewald-summation-based electrostatic energy machine learning- and active-learning-based LAsou method ab initio molecular dynamics
DOI10.3390/ma17081810
通讯作者Zhou, Yuwei(zhouyuwei_kt@163.com) ; Peng, Qing(pengqing@imech.ac.cn)
英文摘要The solid electrolyte Li10GeP2S12 (LGPS) plays a crucial role in the development of all-solid-state batteries and has been widely studied both experimentally and theoretically. The properties of solid electrolytes, such as thermodynamic stability, conductivity, band gap, and more, are closely related to their ground-state structures. However, the presence of site-disordered co-occupancy of Ge/P and defective fractional occupancy of lithium ions results in an exceptionally large number of possible atomic configurations (structures). Currently, the electrostatic energy criterion is widely used to screen favorable candidates and reduce computational costs in first-principles calculations. In this study, we employ the machine learning- and active-learning-based LAsou method, in combination with first-principles calculations, to efficiently predict the most stable configuration of LGPS as reported in the literature. Then, we investigate the diffusion properties of Li ions within the temperature range of 500-900 K using ab initio molecular dynamics. The results demonstrate that the atomic configurations with different skeletons and Li ion distributions significantly affect the Li ions' diffusion. Moreover, the results also suggest that the LAsou method is valuable for refining experimental crystal structures, accelerating theoretical calculations, and facilitating the design of new solid electrolyte materials in the future.
分类号二类/Q1
WOS关键词LITHIUM ; DYNAMICS ; CONDUCTIVITY ; INSIGHTS ; BATTERY ; FAMILY
资助项目National Science Fund for Distin-guished Young Scholars of China
WOS研究方向Chemistry ; Materials Science ; Metallurgy & Metallurgical Engineering ; Physics
语种英语
WOS记录号WOS:001211215800001
资助机构National Science Fund for Distin-guished Young Scholars of China
其他责任者Zhou, Yuwei ; Peng, Qing
源URL[http://dspace.imech.ac.cn/handle/311007/95088]  
专题力学研究所_非线性力学国家重点实验室
作者单位1.Guangdong Aerosp Res Acad, Guangzhou 511458, Peoples R China
2.Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China;
3.Inst Mech, Chinese Acad Sci, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China;
4.Synfuels China Co Ltd, Natl Energy Ctr Coal Clean Fuels, Beijing 101400, Peoples R China;
5.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China;
6.Inst Coal Chem, Chinese Acad Sci, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China;
推荐引用方式
GB/T 7714
Qi, Changlin,Zhou, Yuwei,Yuan XZ,et al. Machine Learning-Accelerated First-Principles Study of Atomic Configuration and Ionic Diffusion in Li10GeP2S12 Solid Electrolyte[J]. MATERIALS,2024,17(8):14.
APA Qi, Changlin.,Zhou, Yuwei.,袁晓泽.,彭庆.,Yang, Yong.,...&Wen, Xiaodong.(2024).Machine Learning-Accelerated First-Principles Study of Atomic Configuration and Ionic Diffusion in Li10GeP2S12 Solid Electrolyte.MATERIALS,17(8),14.
MLA Qi, Changlin,et al."Machine Learning-Accelerated First-Principles Study of Atomic Configuration and Ionic Diffusion in Li10GeP2S12 Solid Electrolyte".MATERIALS 17.8(2024):14.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。