中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multisensor Fusion on Hypergraph for Fault Diagnosis

文献类型:期刊论文

作者Yan, Xunshi2,3; Shi, Zhengang2,3; Sun, Zhe2,3; Zhang CA(张陈安)1; Zhang CA(张陈安)
刊名IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
出版日期2024-05-01
页码11
关键词graph neural network (GNN) hypergraph neural network (HGNN) information fusion multisensor fusion Fault diagnosis
ISSN号1551-3203
DOI10.1109/TII.2024.3393137
通讯作者Zhang, Chen-An(zhch_a@imech.ac.cn)
英文摘要Multisensor information fusion techniques based on deep learning are crucial for machinery fault diagnosis. However, there are two major issues in previous research. First, the relationship between multisensor samples is disregarded, which is important to enhance the diagnostic performance. Second, the structure of the fusion algorithm becomes extremely complex with prolonged training when dealing with machinery equipped with a large number of sensors. To address the aforementioned two issues, our study proposes a new multisensor fusion mechanism that fuses multisensor information on hypergraphs, by building a single-sensor fusion hypergraph and a multisensor fusion hypergraph in the sensor space to embed the fault samples as nodes. In addition, a dual-branch hypergraph neural network is designed to compute the two hypergraphs to obtain the feature representation of the samples and diagnose faults. The algorithm is validated on two datasets for its performance.
分类号一类
WOS关键词NEURAL-NETWORK
资助项目National Science and Technology Major Project of China
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering
语种英语
WOS记录号WOS:001214276600001
资助机构National Science and Technology Major Project of China
其他责任者Zhang, Chen-An
源URL[http://dspace.imech.ac.cn/handle/311007/95064]  
专题力学研究所_高温气体动力学国家重点实验室
通讯作者Zhang CA(张陈安)
作者单位1.Chinese Acad Sci, Inst Mech, State Key Lab High Temp Gas Dynam, Beijing 100190, Peoples R China
2.Tsinghua Univ, Key Lab Adv Reactor Engn & Safety, Minist Educ, Beijing 100084, Peoples R China;
3.Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China;
推荐引用方式
GB/T 7714
Yan, Xunshi,Shi, Zhengang,Sun, Zhe,et al. Multisensor Fusion on Hypergraph for Fault Diagnosis[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,2024:11.
APA Yan, Xunshi,Shi, Zhengang,Sun, Zhe,张陈安,&Zhang CA.(2024).Multisensor Fusion on Hypergraph for Fault Diagnosis.IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,11.
MLA Yan, Xunshi,et al."Multisensor Fusion on Hypergraph for Fault Diagnosis".IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2024):11.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。