中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning

文献类型:期刊论文

作者Duan ZC(段宗超)4,5,6; Ren, Feilong3; Qiang, LiE5; Qi KQ(齐克奇)2; Zhang HY(张昊越)1
刊名SENSORS
出版日期2024-04-01
卷号24期号:8页码:26
关键词gravitational reference sensors temperature reconstruction simulation interpolation machine learning
DOI10.3390/s24082529
通讯作者Qiang, Li-E(qianglie@nssc.ac.cn)
英文摘要Temperature fluctuations affect the performance of high-precision gravitational reference sensors. Due to the limited space and the complex interrelations among sensors, it is not feasible to directly measure the temperatures of sensor heads using temperature sensors. Hence, a high-accuracy interpolation method is essential for reconstructing the surface temperature of sensor heads. In this study, we utilized XGBoost-LSTM for sensor head temperature reconstruction, and we analyzed the performance of this method under two simulation scenarios: ground-based and on-orbit. The findings demonstrate that our method achieves a precision that is two orders of magnitude higher than that of conventional interpolation methods and one order of magnitude higher than that of a BP neural network. Additionally, it exhibits remarkable stability and robustness. The reconstruction accuracy of this method meets the requirements for the key payload temperature control precision specified by the Taiji Program, providing data support for subsequent tasks in thermal noise modeling and subtraction.
分类号二类
WOS关键词SPACE
资助项目National Key R&D Program of China
WOS研究方向Chemistry ; Engineering ; Instruments & Instrumentation
语种英语
WOS记录号WOS:001210058800001
资助机构National Key R&D Program of China
其他责任者Qiang, Li-E
源URL[http://dspace.imech.ac.cn/handle/311007/95040]  
专题力学研究所_国家微重力实验室
作者单位1.Harbin Inst Technol, Res Ctr Satellite Technol, Harbin 150001, Peoples R China
2.Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China;
3.Xian Aerosp Remote Sensing Data Technol Corp, Xian 710054, Peoples R China;
4.Univ Chinese Acad Sci, Taiji Lab Gravitat Wave Universe Beijing Hangzhou, Beijing 100049, Peoples R China;
5.Chinese Acad Sci, Natl Space Sci Ctr, Beijing 100190, Peoples R China;
6.Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China;
推荐引用方式
GB/T 7714
Duan ZC,Ren, Feilong,Qiang, LiE,et al. Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning[J]. SENSORS,2024,24(8):26.
APA 段宗超,Ren, Feilong,Qiang, LiE,齐克奇,&张昊越.(2024).Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning.SENSORS,24(8),26.
MLA 段宗超,et al."Sensor Head Temperature Distribution Reconstruction of High-Precision Gravitational Reference Sensors with Machine Learning".SENSORS 24.8(2024):26.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。