中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SERS-based microdevices for use as in vitro diagnostic biosensors

文献类型:期刊论文

作者Lee, Sungwoon1; Dang, Hajun1; Moon, Joung-Il1; Kim, Kihyun1; Joung, Younju1; Park, Sohyun1; Yu, Qian1; Chen, Jiadong1; Lu, Mengdan1; Chen, Lingxin2,3
刊名CHEMICAL SOCIETY REVIEWS
出版日期2024-04-10
页码34
ISSN号0306-0012
DOI10.1039/d3cs01055d
通讯作者Chen, Lingxin(lxchen@yic.ac.cn) ; Joo, Sang-Woo(sjoo@ssu.ac.kr) ; Choo, Jaebum(jbchoo@cau.ac.kr)
英文摘要Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
WOS关键词ENHANCED RAMAN-SCATTERING ; LATERAL FLOW ASSAY ; HIGHLY SENSITIVE DETECTION ; LUNG-CANCER ; ULTRASENSITIVE DETECTION ; PROSTATE-CANCER ; COMPETITIVE IMMUNOASSAY ; DNA OLIGONUCLEOTIDES ; BACTERIAL PATHOGENS ; BIOMARKER DETECTION
WOS研究方向Chemistry
语种英语
WOS记录号WOS:001199753100001
资助机构National Natural Science Foundation of China ; National Research Foundation of Korea ; National Natural Science Foundation of China
源URL[http://ir.yic.ac.cn/handle/133337/35345]  
专题中国科学院烟台海岸带研究所
通讯作者Chen, Lingxin; Joo, Sang-Woo; Choo, Jaebum
作者单位1.Chung Ang Univ, Dept Chem, Seoul 06974, South Korea
2.Binzhou Med Univ, Sch Pharm, Yantai 264003, Peoples R China
3.Yantai Inst Coastal Zone Res, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China
4.Soongsil Univ, Dept Informat Commun Mat & Chem Convergence Techno, Seoul 06978, South Korea
推荐引用方式
GB/T 7714
Lee, Sungwoon,Dang, Hajun,Moon, Joung-Il,et al. SERS-based microdevices for use as in vitro diagnostic biosensors[J]. CHEMICAL SOCIETY REVIEWS,2024:34.
APA Lee, Sungwoon.,Dang, Hajun.,Moon, Joung-Il.,Kim, Kihyun.,Joung, Younju.,...&Choo, Jaebum.(2024).SERS-based microdevices for use as in vitro diagnostic biosensors.CHEMICAL SOCIETY REVIEWS,34.
MLA Lee, Sungwoon,et al."SERS-based microdevices for use as in vitro diagnostic biosensors".CHEMICAL SOCIETY REVIEWS (2024):34.

入库方式: OAI收割

来源:烟台海岸带研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。