Individual Populus euphratica Tree Detection in Sparse Desert Forests Based on Constrained 2-D Bin Packing
文献类型:期刊论文
作者 | Wang, Haoyu3,4,5,6,7,8; Li, Junli4,8; Van de Voorde, Tim3,5,7,8; Zhou, Chenghu2,6; De Maeyer, Philippe3,5,7,8; Ma, Yubo1,6; Shen, Zhanfeng1,6 |
刊名 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
出版日期 | 2024 |
卷号 | 62页码:19 |
关键词 | Forests Filling Semantic segmentation Feature extraction Clustering algorithms Random forests Geography Individual tree detection Populus euphratica (P. euphratica) semantic segmentation template filling |
ISSN号 | 0196-2892 |
DOI | 10.1109/TGRS.2024.3391352 |
英文摘要 | Detecting individual Populus euphratica (P. euphratica) trees in desert forest areas is crucial for monitoring their ecophysiological characteristics and ecological conservation. However, the presence of the spectral-similar Tamarix chinensis (T. chinensis) in the habitats, along with the densely overlapping crowns in clustered P. euphratica, presents a challenge for the task. This article proposes a method to detect individual P. euphratica in very high spatial resolution (VHR) images. First, the deep learning-based semantic segmentation model is used to differentiate between P. euphratica and T. chinensis. Second, the individual tree detection is converted into a constrained 2-D bin packing model and solved by a heuristic template matching and filling algorithm. The experimental data consist of a WorldView-2 image capturing sparse desert forests of the lower reaches of the Tarim River. The 22 296 individual P. euphratica trees were detected, achieving F1-scores of 0.885, 0.869, and 0.902 on three datasets with varying difficulty levels. Furthermore, experiments were conducted to compare with other methods, and the results showed that the proposed method achieved the best performance on all three datasets. The proposed method can be applied to map the distribution of individual P. euphratica trees in sparse desert forests and can provide methodological references for similar tasks related to individual tree detection in natural forests. |
WOS关键词 | CROWN DETECTION ; SALT CEDAR ; SVM METHOD ; LIDAR DATA ; DELINEATION ; IMAGERY ; BIODIVERSITY ; INFORMATION ; DENSITY ; RIVER |
资助项目 | Tianshan Talent-Science and Technology Innovation Team |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:001214578200010 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | Tianshan Talent-Science and Technology Innovation Team |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/204839] ![]() |
专题 | 资源与环境信息系统国家重点实验室_外文论文 |
通讯作者 | Li, Junli; Shen, Zhanfeng |
作者单位 | 1.Aerosp Informat Res Inst, Chinese Acad Sci, Natl Engn Res Ctr Geomat, Beijing 100101, Peoples R China 2.Inst Geog Sci & Nat Resources Res, Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China 3.Sino Belgian Joint Lab Geoinformat, B-9000 Ghent, Belgium 4.Key Lab GIS & RS Applicat Xinjiang Uygur Autonomou, Urumqi 830011, Peoples R China 5.Univ Ghent, Dept Geog, B-9000 Ghent, Belgium 6.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China 7.Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Sino Belgian Joint Lab Geoinformat, Urumqi 830011, Peoples R China 8.Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Haoyu,Li, Junli,Van de Voorde, Tim,et al. Individual Populus euphratica Tree Detection in Sparse Desert Forests Based on Constrained 2-D Bin Packing[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2024,62:19. |
APA | Wang, Haoyu.,Li, Junli.,Van de Voorde, Tim.,Zhou, Chenghu.,De Maeyer, Philippe.,...&Shen, Zhanfeng.(2024).Individual Populus euphratica Tree Detection in Sparse Desert Forests Based on Constrained 2-D Bin Packing.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,62,19. |
MLA | Wang, Haoyu,et al."Individual Populus euphratica Tree Detection in Sparse Desert Forests Based on Constrained 2-D Bin Packing".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62(2024):19. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。