中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Satellite Integration into 5G: Deep Reinforcement Learning for Network Selection

文献类型:期刊论文

作者Emanuele De Santis; Alessandro Giuseppi; Antonio Pietrabissa; Michael Capponi; Francesco Delli Priscoli
刊名Machine Intelligence Research
出版日期2022
卷号19期号:2页码:127-137
关键词Network selection HetNet deep reinforcement learning deep-Q-network (DQN) 5G communications
ISSN号2731-538X
DOI10.1007/s11633-022-1326-3
英文摘要This paper proposes a deep-Q-network (DQN) controller for network selection and adaptive resource allocation in heterogeneous networks, developed on the ground of a Markov decision process (MDP) model of the problem. Network selection is an enabling technology for multi-connectivity, one of the core functionalities of 5G. For this reason, the present work considers a realistic network model that takes into account path-loss models and intra-RAT (radio access technology) interference. Numerical simulations validate the proposed approach and show the improvements achieved in terms of connection acceptance, resource allocation, and load balancing. In particular, the DQN algorithm has been tested against classic reinforcement learning one and other baseline approaches.
源URL[http://ir.ia.ac.cn/handle/173211/55937]  
专题自动化研究所_学术期刊_International Journal of Automation and Computing
作者单位Department of Computer, Control and Management Engineering “Antonio Ruberti”, University of Rome La Sapienza, Rome 00185, Italy
推荐引用方式
GB/T 7714
Emanuele De Santis,Alessandro Giuseppi,Antonio Pietrabissa,et al. Satellite Integration into 5G: Deep Reinforcement Learning for Network Selection[J]. Machine Intelligence Research,2022,19(2):127-137.
APA Emanuele De Santis,Alessandro Giuseppi,Antonio Pietrabissa,Michael Capponi,&Francesco Delli Priscoli.(2022).Satellite Integration into 5G: Deep Reinforcement Learning for Network Selection.Machine Intelligence Research,19(2),127-137.
MLA Emanuele De Santis,et al."Satellite Integration into 5G: Deep Reinforcement Learning for Network Selection".Machine Intelligence Research 19.2(2022):127-137.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。