中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Paradigm Shift in Natural Language Processing

文献类型:期刊论文

作者Tian-Xiang Sun1,2; Xiang-Yang Liu1,2; Xi-Peng Qiu1,2; Xuan-Jing Huang1,2
刊名Machine Intelligence Research
出版日期2022
卷号19期号:3页码:169-183
关键词Face detection global context attention mechanism computer vision deep learning
ISSN号2731-538X
DOI10.1007/s11633-022-1331-6
英文摘要

Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. This paper presents a robust, dense face detector using global context and visual attention mechanisms which can significantly improve detection accuracy. Specifically, a global context fusion module with top-down feedback is proposed to improve the ability to identify tiny faces. Moreover, a visual attention mechanism is employed to solve the problem of occlusion. Experimental results on the public face datasets WIDER FACE and FDDB demonstrate the effectiveness of the proposed method.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/55940]  
专题自动化研究所_学术期刊_International Journal of Automation and Computing
作者单位1.Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200438, China
2.School of Computer Science, Fudan University, Shanghai 200438, China
推荐引用方式
GB/T 7714
Tian-Xiang Sun,Xiang-Yang Liu,Xi-Peng Qiu,et al. Paradigm Shift in Natural Language Processing[J]. Machine Intelligence Research,2022,19(3):169-183.
APA Tian-Xiang Sun,Xiang-Yang Liu,Xi-Peng Qiu,&Xuan-Jing Huang.(2022).Paradigm Shift in Natural Language Processing.Machine Intelligence Research,19(3),169-183.
MLA Tian-Xiang Sun,et al."Paradigm Shift in Natural Language Processing".Machine Intelligence Research 19.3(2022):169-183.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。