中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Dense Face Network: A Dense Face Detector Based on Global Context and Visual Attention Mechanism

文献类型:期刊论文

作者Lin Song1; Jin-Fu Yang1,2; Qing-Zhen Shang1; Ming-Ai Li1
刊名Machine Intelligence Research
出版日期2022
卷号19期号:3页码:247-256
ISSN号2731-538X
DOI10.1007/s11633-022-1327-2
英文摘要Face detection has achieved tremendous strides thanks to convolutional neural networks. However, dense face detection remains an open challenge due to large face scale variation, tiny faces, and serious occlusion. This paper presents a robust, dense face detector using global context and visual attention mechanisms which can significantly improve detection accuracy. Specifically, a global context fusion module with top-down feedback is proposed to improve the ability to identify tiny faces. Moreover, a visual attention mechanism is employed to solve the problem of occlusion. Experimental results on the public face datasets WIDER FACE and FDDB demonstrate the effectiveness of the proposed method.
源URL[http://ir.ia.ac.cn/handle/173211/55944]  
专题自动化研究所_学术期刊_International Journal of Automation and Computing
作者单位1.Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2.Beijing Key Laboratory of Computational Intelligence and Intelligent Systems, Beijing 100124, China
推荐引用方式
GB/T 7714
Lin Song,Jin-Fu Yang,Qing-Zhen Shang,et al. Dense Face Network: A Dense Face Detector Based on Global Context and Visual Attention Mechanism[J]. Machine Intelligence Research,2022,19(3):247-256.
APA Lin Song,Jin-Fu Yang,Qing-Zhen Shang,&Ming-Ai Li.(2022).Dense Face Network: A Dense Face Detector Based on Global Context and Visual Attention Mechanism.Machine Intelligence Research,19(3),247-256.
MLA Lin Song,et al."Dense Face Network: A Dense Face Detector Based on Global Context and Visual Attention Mechanism".Machine Intelligence Research 19.3(2022):247-256.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。